Data Estimation in Sensor Networks Using Physical and Statistical Methodologies
被引:13
作者:
Li, Yingshu
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Li, Yingshu
[1
]
Ai, Chunyu
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Ai, Chunyu
[1
]
Deshmukh, Wiwek R.
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Deshmukh, Wiwek R.
[1
]
Wu, Yiwei
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Wu, Yiwei
[1
]
机构:
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
来源:
28TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, VOLS 1 AND 2, PROCEEDINGS
|
2008年
关键词:
D O I:
10.1109/ICDCS.2008.22
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Wireless Sensor Networks (WSNs) are employed in many applications in order to collect data. One key challenge is to minimize energy consumption to prolong network lifetime. A scheme of making some nodes asleep and estimating their values according to the other active nodes' readings has been proved energy-efficient. For the purpose of improving the precision of estimation, we propose two powerful estimation models, Data Estimation using Physical Model (DEPM) and Data Estimation using Statistical Model (DESM). DEPM estimates the values of sleeping nodes by the physical characteristics of sensed attributes, while DESM estimates the values through the spatial and temporal correlations of the nodes. Experimental results on real sensor networks show that the proposed techniques provide accurate estimations and conserve energy efficiently.