General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

被引:54
作者
Muratov, CB [1 ]
Osipov, VV [1 ]
机构
[1] RUSSIAN SCI CTR ORION, DEPT THEORET PHYS, MOSCOW 111123, RUSSIA
关键词
D O I
10.1103/PhysRevE.53.3101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An asymptotic method for finding instabilities of arbitrary d-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of two- and three-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order 1. The analysis performed explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.
引用
收藏
页码:3101 / 3116
页数:16
相关论文
共 47 条
[21]  
KERNER BS, 1985, MIKROELEKTRONIKA, V14, P389
[22]  
KERNER BS, 1986, NONLINEAR IRREVERSIB
[23]  
KERNER BS, 1980, ZH EKSP TEOR FIZ, V52, P1122
[24]  
KERNER BS, 1978, ZH EKSP TEOR FIZ, V47, P874
[25]  
KERNER BS, 1984, MIKROELEKTRONIKA, V13, P407
[26]  
KERNER BS, 1984, SOV PHYS DOKL, V13, P456
[27]   STATIONARY WAVE SOLUTIONS OF A SYSTEM OF REACTION-DIFFUSION EQUATIONS DERIVED FROM THE FITZHUGH-NAGUMO EQUATIONS [J].
KLAASEN, GA ;
TROY, WC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (01) :96-110
[28]   LOCALIZED PATTERNS IN REACTION-DIFFUSION SYSTEMS [J].
KOGA, S ;
KURAMOTO, Y .
PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01) :106-121
[29]   BIFURCATION TO TRAVELING SPOTS IN REACTION-DIFFUSION SYSTEMS [J].
KRISCHER, K ;
MIKHAILOV, A .
PHYSICAL REVIEW LETTERS, 1994, 73 (23) :3165-3168
[30]   PROPERTIES OF AUTOWAVES INCLUDING TRANSITIONS BETWEEN THE TRAVELING AND STATIC SOLITARY STATES [J].
KUZNETSOVA, EM ;
OSIPOV, VV .
PHYSICAL REVIEW E, 1995, 51 (01) :148-157