Transience on the average and spontaneous symmetry breaking on graphs
被引:9
作者:
Burioni, R
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Fis, Ist Nazl Fis Mat, I-43100 Parma, ItalyUniv Parma, Dipartimento Fis, Ist Nazl Fis Mat, I-43100 Parma, Italy
Burioni, R
[1
]
Cassi, D
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Fis, Ist Nazl Fis Mat, I-43100 Parma, ItalyUniv Parma, Dipartimento Fis, Ist Nazl Fis Mat, I-43100 Parma, Italy
Cassi, D
[1
]
论文数: 引用数:
h-index:
机构:
Vezzani, A
[1
]
机构:
[1] Univ Parma, Dipartimento Fis, Ist Nazl Fis Mat, I-43100 Parma, Italy
来源:
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
|
1999年
/
32卷
/
30期
关键词:
D O I:
10.1088/0305-4470/32/30/302
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We give a rigorous proof of the existence of spontaneous magnetization at finite temperature for classical spin models on transient on the average (TOA) graphs, i.e. graphs where a random walker returns to its starting point with an average probability (F) over bar < 1. The proof holds for models with O(n) symmetry with n greater than or equal to 1, therefore including the Ising model as a particular case. This result, together with the generalized Mennin-Wagner theorem, completes the picture of phase transitions for continuous symmetry models on graphs and leads to a natural classification of general networks in terms of the two geometrical superuniversality classes of recursive on the average and transient on rite average.