Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics

被引:54
作者
Dettmann, CP
Morriss, GP
机构
[1] School of Physics, University of New South Wales, Sydney
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 03期
关键词
MOLECULAR-DYNAMICS; CONSTANT-TEMPERATURE; CANONICAL ENSEMBLE; SYSTEMS;
D O I
10.1103/PhysRevE.55.3693
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Nose Hamiltonian is adapted, leading to a derivation of the Nose-Hoover equations of motion which does not involve time transformations, and in which the degree of freedom corresponding to the external reservoir is treated on the same footing as those of the rest of the system. In this form it is possible to prove the conjugate pairing rule for Lyapunov exponents of this system.
引用
收藏
页码:3693 / 3696
页数:4
相关论文
共 24 条
[11]  
Goldstein H., 1980, Classical Mechanics, V2nd
[12]   THERMOSTATTED MOLECULAR-DYNAMICS - HOW TO AVOID THE TODA DEMON HIDDEN IN NOSE-HOOVER DYNAMICS [J].
HOLIAN, BL ;
VOTER, AF ;
RAVELO, R .
PHYSICAL REVIEW E, 1995, 52 (03) :2338-2347
[13]   Kinetic moments method for the canonical ensemble distribution [J].
Hoover, WG ;
Holian, BL .
PHYSICS LETTERS A, 1996, 211 (05) :253-257
[14]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[15]  
ISBISTER D, IN PRESS PHYSICA A
[16]   GENERALIZATION OF NOSE ISOTHERMAL MOLECULAR-DYNAMICS [J].
JELLINEK, J ;
BERRY, RS .
PHYSICAL REVIEW A, 1988, 38 (06) :3069-3072
[18]   NOSE-HOOVER CHAINS - THE CANONICAL ENSEMBLE VIA CONTINUOUS DYNAMICS [J].
MARTYNA, GJ ;
KLEIN, ML ;
TUCKERMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04) :2635-2643
[19]   A MOLECULAR-DYNAMICS METHOD FOR SIMULATIONS IN THE CANONICAL ENSEMBLE [J].
NOSE, S .
MOLECULAR PHYSICS, 1984, 52 (02) :255-268
[20]   A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J].
NOSE, S .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (01) :511-519