Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated

被引:93
作者
Kowluru, RA [1 ]
机构
[1] Wayne State Univ, Kresge Eye Inst, Detroit, MI 48201 USA
关键词
diabetes; nitric oxides; oxidative stress; protein kinase C; retinopathy;
D O I
10.1007/s592-001-8076-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Hyperglycemia results in various retinal metabolic abnormalities that can contribute to the development of retinopathy, but it has been difficult to recognize which abnormalities are critical. In this study, the possible interrelationship between hyperglycemia-stimulated oxidative stress, protein kinase C (PKC), and nitric oxide (NO) was investigated by examining the effects of inhibitors of oxidative stress, PKC and NO on glucose-induced retinal oxidative stress, PKC activity and NO levels concentrations, both under in vitro conditions in retinal endothelial cells and isolated retina, and in vivo in the retina from diabetic rats. Bovine retinal endothelial cells were incubated in 5 or 30 mM glucose for 3 days in the presence or absence of inhibitors of oxidative stress (N-acetyl cysteine), PKC (LY333531), or NO (L-NAME). Incubation of retinal endothelial cells in 30 mM glucose resulted in an approximately 2-fold elevation in retinal TBARS, PKC and NO. Addition of N-acetyl cysteine, LY333531, or L-NAME significantly inhibited glucose-induced elevation in oxidative stress, NO and PKC. Similar results were obtained when intact retinas from normal rats were incubated with 30 mM glucose for 6 hours. In diabetic rats, elevations in retinal TBARS, PKC and NO were observed at 2 months of diabetes, and administration of N-acetyl cysteine, LY333531 or aminoguanidine prevented diabetes-induced elevation in retinal TBARS and NO levels, and PKC activity. Thus, these results suggest that diabetes-induced metabolic abnormalities, originally considered to be independent abnormalities, are apparently interrelated in retina; inhibiting a single retinal abnormality may have multiple beneficial effects to correct retinal dysmetabolism and to inhibit the development of retinopathy.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 39 条
[1]   Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor [J].
Aiello, LP ;
Bursell, SE ;
Clermont, A ;
Duh, E ;
Ishii, H ;
Takagi, C ;
Mori, F ;
Ciulla, TA ;
Ways, K ;
Jirousek, M ;
Smith, LEH ;
King, GL .
DIABETES, 1997, 46 (09) :1473-1480
[2]   Regulation of caspase activation and cis-diamminedichloroplatinum(II)-induced cell death by protein kinase C [J].
Basu, A ;
Akkaraju, GR .
BIOCHEMISTRY, 1999, 38 (14) :4245-4251
[3]  
BAUGARTNERPARZE.SM, 1995, DIABETES, V44, P1323
[4]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   AMINOGUANIDINE PREVENTS DIABETES-INDUCED ARTERIAL-WALL PROTEIN CROSS-LINKING [J].
BROWNLEE, M ;
VLASSARA, H ;
KOONEY, A ;
ULRICH, P ;
CERAMI, A .
SCIENCE, 1986, 232 (4758) :1629-1632
[7]   Can protein kinase C inhibition and vitamin E prevent the development of diabetic vascular complications? [J].
Bursell, SE ;
King, GL .
DIABETES RESEARCH AND CLINICAL PRACTICE, 1999, 45 (2-3) :169-182
[8]   NITRIC-OXIDE SYNTHASE ACTIVITY AND EXPRESSION IN RETINAL CAPILLARY ENDOTHELIAL-CELLS AND PERICYTES [J].
CHAKRAVARTHY, U ;
STITT, AW ;
MCNALLY, J ;
BAILIE, JR ;
HOEY, EM ;
DUPREX, P .
CURRENT EYE RESEARCH, 1995, 14 (04) :285-294
[9]   Protein kinase C signaling and oxidative stress [J].
Gopalakrishna, R ;
Jaken, S .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (09) :1349-1361
[10]   HIGH GLUCOSE CAN INDUCE LIPID-PEROXIDATION IN THE ISOLATED RAT GLOMERULI [J].
HA, HJ ;
YOON, SJ ;
KIM, KH .
KIDNEY INTERNATIONAL, 1994, 46 (06) :1620-1626