Choosing negative examples for the prediction of protein-protein interactions

被引:172
作者
Ben-Hur, A [1 ]
Noble, WS
机构
[1] Colorado State Univ, Dept Comp Sci, Ft Collins, CO 80523 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
[3] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[4] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
10.1186/1471-2105-7-S1-S2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The protein-protein interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. This need has prompted the development of a number of methods for predicting protein-protein interactions based on various sources of data and methodologies. The common method for choosing negative examples for training a predictor of protein-protein interactions is based on annotations of cellular localization, and the observation that pairs of proteins that have different localization patterns are unlikely to interact. While this method leads to high quality sets of non-interacting proteins, we find that this choice can lead to biased estimates of prediction accuracy, because the constraints placed on the distribution of the negative examples makes the task easier. The effects of this bias are demonstrated in the context of both sequence-based and non-sequence based features used for predicting protein-protein interactions.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[2]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   BIND - The Biomolecular Interaction Network Database [J].
Bader, GD ;
Donaldson, I ;
Wolting, C ;
Ouellette, BFF ;
Pawson, T ;
Hogue, CWV .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :242-245
[5]   Kernel methods for predicting protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BIOINFORMATICS, 2005, 21 :I38-I46
[6]   Remote homology detection: a motif based approach [J].
Ben-Hur, Asa ;
Brutlag, Douglas .
BIOINFORMATICS, 2003, 19 :i26-i33
[7]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[8]   Protein interactions - Two methods for assessment of the reliability of high throughput observations [J].
Deane, CM ;
Salwinski, L ;
Xenarios, I ;
Eisenberg, D .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (05) :349-356
[9]   Inferring domain-domain interactions from protein-protein interactions [J].
Deng, MH ;
Mehta, S ;
Sun, FZ ;
Chen, T .
GENOME RESEARCH, 2002, 12 (10) :1540-1548
[10]   Genomic expression programs in the response of yeast cells to environmental changes [J].
Gasch, AP ;
Spellman, PT ;
Kao, CM ;
Carmel-Harel, O ;
Eisen, MB ;
Storz, G ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4241-4257