The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction

被引:51
作者
Guemas, Virginie [1 ]
Corti, Susanna [2 ,3 ]
Garcia-Serrano, J. [1 ]
Doblas-Reyes, F. J. [1 ,4 ]
Balmaseda, Magdalena [2 ]
Magnusson, Linus [2 ]
机构
[1] Inst Catala Ciencies Clima, Barcelona 08005, Spain
[2] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
[3] CNR, Ist Sci Atmosfera Clima, Bologna, Italy
[4] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain
关键词
AUSTRALIAN WINTER RAINFALL; TEMPERATURE; DIPOLE; VARIABILITY; IMPACT; MODEL; SST;
D O I
10.1175/JCLI-D-12-00049.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Indian Ocean stands out as the region where the state-of-the-art decadal climate predictions of sea surface temperature (SST) perform the best worldwide for forecast times ranging from the second to the ninth year, according to correlation and root-mean-square error (RMSE) scores. This paper investigates the reasons for this high skill by assessing the contributions from the initial conditions, greenhouse gases, solar activity, and volcanic aerosols. The comparison between the SST correlation skill in uninitialized historical simulations and hindcasts initialized from estimates of the observed climate state shows that the high Indian Ocean skill is largely explained by the varying radiative forcings, the latter finding being supported by a set of additional sensitivity experiments. The long-term warming trend is the primary contributor to the high skill, though not the only one. Volcanic aerosols bring additional skill in this region as shown by the comparison between initialized hindcasts taking into account or not the effect of volcanic stratospheric aerosols and by the drop in skill when filtering out their effect in hindcasts that take them into account. Indeed, the Indian Ocean is shown to be the region where the ratio of the internally generated over the externally forced variability is the lowest, where the amplitude of the internal variability has been estimated by removing the effect of long-term warming trend and volcanic aerosols by a multiple least squares linear regression on observed SSTs.
引用
收藏
页码:726 / 739
页数:14
相关论文
共 48 条
[1]  
[Anonymous], 658 ECMWF
[2]  
[Anonymous], PAPERS METEOROLOGY
[3]   Influence of the Indian Ocean Dipole on the Australian winter rainfall [J].
Ashok, K ;
Guan, ZY ;
Yamagata, T .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (15) :CLM6-1
[4]   Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO [J].
Ashok, K ;
Guan, ZY ;
Yamagata, T .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (23) :4499-4502
[5]   North Atlantic oscillation response to anomalous Indian Ocean SST in a coupled GCM [J].
Bader, J ;
Latif, M .
JOURNAL OF CLIMATE, 2005, 18 (24) :5382-5389
[6]  
Balmaseda M., 2010, 1 COMBINE
[7]   Indian Ocean climate event brings floods to East Africa's lakes and the Sudd marsh [J].
Birkett, C ;
Murtugudde, R ;
Allan, T .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (08) :1031-1034
[8]   Inferring climate sensitivity from volcanic events [J].
Boer, G. J. ;
Stowasser, M. ;
Hamilton, K. .
CLIMATE DYNAMICS, 2007, 28 (05) :481-502
[9]   Decadal potential predictability of twenty-first century climate [J].
Boer, George J. .
CLIMATE DYNAMICS, 2011, 36 (5-6) :1119-1133
[10]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597