Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers

被引:433
作者
Gao, Tao [1 ,2 ]
Glerup, Marianne [1 ,2 ]
Krumeich, Frank [3 ]
Nesper, Reinhard [3 ]
Fjellvag, Helmer [1 ,2 ]
Norby, Poul [1 ,2 ]
机构
[1] Univ Oslo, Dept Chem, N-0315 Oslo, Norway
[2] Univ Oslo, Ctr Mat Sci & Nanotechnol, N-0315 Oslo, Norway
[3] ETH, Inorgan Chem Lab, CH-8093 Zurich, Switzerland
关键词
D O I
10.1021/jp804924f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cryptomelane-type manganese dioxide (K-MnO(2)) nanofibers with typical diameters of 20-60 nm and lengths of 1-6 mu m were prepared by reacting KMnO(4) with MnSO(4) under hydrothermal conditions. Rietveld refinement from synchrotron X-ray powder diffraction data showed that the K-MnO(2) nanofibers crystallize in a bodycentered tetragonal structure (space group 14/m) with unit cell parameters a = 9.8241(5) angstrom and c = 2.8523(1) and elongate along the < 001 > direction. The K-MnO(2) nanofibers had a mean chemical composition of K(0.11)(H(3)O)(0.05)MnO(2). The optical band gap of the K-MnO(2) nanofibers was estimated to be 1.32 eV based on the UV-visible absorption. The K-MnO(2) nanofibers had four diagnostic infrared absorptions at 722, 593, 524, and 466 cm(-1), which represents specific fingerprints of the vibrational features of MnO(2) materials containing (2 x 2) + (1 x 1) tunnel structures. The Raman scattering spectrum of the K-MnO(2) nanofibers had nine Raman bands with four main contributions at 183, 386, 574, and 634 cm(-1) along with five weak ones at 286, 330, 470, 512, and 753 cm(-1), which are attributed to the Mn-O lattice vibrations within the MnO(6) octahedral frameworks. These intrinsic vibrational features can be conveniently used for online and/or in situ analyses of the K-MnO(2) nanofibers during electrochemical and/or ion-exchange reactions.
引用
收藏
页码:13134 / 13140
页数:7
相关论文
共 53 条
[11]   RAMAN-SPECTRUM OF H3O+ IONS IN AQUEOUS ACIDS [J].
GIGUERE, PA ;
GUILLOT, JG .
JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (16) :3231-3233
[12]   Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy [J].
Hsiao, Ching-Lien ;
Tu, Li-Wei ;
Chi, Tung-Wei ;
Chen, Min ;
Young, Tai-Fa ;
Chia, Chih-Ta ;
Chang, Yu-Ming .
APPLIED PHYSICS LETTERS, 2007, 90 (04)
[13]   Magnetic and transport properties of Mn oxides films [J].
Inoue, J .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (06) :643-648
[14]   Stabilized alpha-MnO2 electrodes for rechargeable 3 V lithium batteries [J].
Johnson, CS ;
Mansuetto, MF ;
Thackeray, MM ;
Shao-Horn, Y ;
Hackney, SA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (07) :2279-2283
[15]   Raman spectra of birnessite manganese dioxides [J].
Julien, C ;
Massot, M ;
Baddour-Hadjean, R ;
Franger, S ;
Bach, S ;
Pereira-Ramos, JP .
SOLID STATE IONICS, 2003, 159 (3-4) :345-356
[16]   Study of structural defects in γ-MnO2 by Raman spectroscopy [J].
Julien, C ;
Massot, M ;
Rangan, S ;
Lemal, M ;
Guyomard, D .
JOURNAL OF RAMAN SPECTROSCOPY, 2002, 33 (04) :223-228
[17]   Lattice vibrations of manganese oxides - Part 1. Periodic structures [J].
Julien, CM ;
Massot, M ;
Poinsignon, C .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2004, 60 (03) :689-700
[18]   Lithium ion insertion and extraction reactions with Hollandite-type manganese dioxide free from any stabilizing cations in its tunnel cavity [J].
Kijima, N ;
Takahashi, Y ;
Akimoto, J ;
Awaka, J .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (09) :2741-2750
[19]  
Larson A.C., 2004, GEN STRUCTURE ANAL S, P748
[20]   One-dimensional α-MnO2:: Trapping chemistry of tunnel structures, structural stability, and magnetic transitions [J].
Li, Liping ;
Pan, Yinzhen ;
Chen, Lijuan ;
Li, Guangshe .
JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (10) :2896-2904