Dark energy anisotropic stress and large scale structure formation

被引:319
作者
Koivisto, T [1 ]
Mota, DF
机构
[1] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[2] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway
来源
PHYSICAL REVIEW D | 2006年 / 73卷 / 08期
关键词
D O I
10.1103/PhysRevD.73.083502
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the consequences of an imperfect dark energy fluid on the large scale structure. A phenomenological three parameter fluid description is used to study the effect of dark energy on the cosmic microwave background radiation (CMBR) and matter power spectrum. In addition to the equation of state and the sound speed, we allow a nonzero viscosity parameter for the fluid. Then anisotropic stress perturbations are generated in dark energy. In general, we find that this possibility is not excluded by the present day cosmological observations. In the simplest case when all of the three parameters are constant, we find that the observable effects of the anisotropic stress can be closely mimicked by varying the sound speed of perfect dark energy. However, now also negative values for the sound speed, as expected for adiabatic fluid model, are tolerable and in fact could explain the observed low quadrupole in the CMBR spectrum. We investigate also structure formation of imperfect fluid dark energy characterized by an evolving equation of state. In particular, we study models unifying dark energy with dark matter, such as the Chaplygin gas or the Cardassian expansion, with a shear perturbation included. This can stabilize the growth of inhomogeneities in these models, thus somewhat improving their compatibility with large scale structure observations.
引用
收藏
页数:12
相关论文
共 80 条
[61]  
NUNES NJ, ASTROPH0409481
[62]   Accelerated expansion of the universe driven by tachyonic matter [J].
Padmanabhan, T .
PHYSICAL REVIEW D, 2002, 66 (02)
[63]   The cosmological constant and dark energy [J].
Peebles, PJE ;
Ratra, B .
REVIEWS OF MODERN PHYSICS, 2003, 75 (02) :559-606
[64]   Measurements of Ω and Λ from 42 high-redshift supernovae [J].
Perlmutter, S ;
Aldering, G ;
Goldhaber, G ;
Knop, RA ;
Nugent, P ;
Castro, PG ;
Deustua, S ;
Fabbro, S ;
Goobar, A ;
Groom, DE ;
Hook, IM ;
Kim, AG ;
Kim, MY ;
Lee, JC ;
Nunes, NJ ;
Pain, R ;
Pennypacker, CR ;
Quimby, R ;
Lidman, C ;
Ellis, RS ;
Irwin, M ;
McMahon, RG ;
Ruiz-Lapuente, P ;
Walton, N ;
Schaefer, B ;
Boyle, BJ ;
Filippenko, AV ;
Matheson, T ;
Fruchter, AS ;
Panagia, N ;
Newberg, HJM ;
Couch, WJ .
ASTROPHYSICAL JOURNAL, 1999, 517 (02) :565-586
[65]   COSMOLOGICAL CONSEQUENCES OF A ROLLING HOMOGENEOUS SCALAR FIELD [J].
RATRA, B ;
PEEBLES, PJE .
PHYSICAL REVIEW D, 1988, 37 (12) :3406-3427
[66]   Entropy perturbations in quartessence Chaplygin models -: art. no. 061302 [J].
Reis, RRR ;
Waga, I ;
Calvao, MO ;
Jorás, SE .
PHYSICAL REVIEW D, 2003, 68 (06)
[67]   Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope:: Evidence for past deceleration and constraints on dark energy evolution [J].
Riess, AG ;
Strolger, LG ;
Tonry, J ;
Casertano, S ;
Ferguson, HC ;
Mobasher, B ;
Challis, P ;
Filippenko, AV ;
Jha, S ;
Li, WD ;
Chornock, R ;
Kirshner, RP ;
Leibundgut, B ;
Dickinson, M ;
Livio, M ;
Giavalisco, M ;
Steidel, CC ;
Benítez, T ;
Tsvetanov, Z .
ASTROPHYSICAL JOURNAL, 2004, 607 (02) :665-687
[68]   Observational evidence from supernovae for an accelerating universe and a cosmological constant [J].
Riess, AG ;
Filippenko, AV ;
Challis, P ;
Clocchiatti, A ;
Diercks, A ;
Garnavich, PM ;
Gilliland, RL ;
Hogan, CJ ;
Jha, S ;
Kirshner, RP ;
Leibundgut, B ;
Phillips, MM ;
Reiss, D ;
Schmidt, BP ;
Schommer, RA ;
Smith, RC ;
Spyromilio, J ;
Stubbs, C ;
Suntzeff, NB ;
Tonry, J .
ASTRONOMICAL JOURNAL, 1998, 116 (03) :1009-1038
[69]   The end of unified dark matter? [J].
Sandvik, HB ;
Tegmark, M ;
Zaldarriaga, M ;
Waga, I .
PHYSICAL REVIEW D, 2004, 69 (12)
[70]   Is the low-l microwave background cosmic? -: art. no. 221301 [J].
Schwarz, DJ ;
Starkman, GD ;
Huterer, D ;
Copi, CJ .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)