Hierarchical Nanotube-Constructed Porous TiO2-B Spheres for High Performance Lithium Ion Batteries

被引:53
作者
Cai, Yi [1 ]
Wang, Hong-En [1 ]
Huang, Shao-Zhuan [1 ]
Jin, Jun [1 ]
Wang, Chao [1 ]
Yu, Yong [1 ]
Li, Yu [1 ]
Su, Bao-Lian [1 ,2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[2] Univ Namur, Lab Inorgan Mat Chem CMI, B-5000 Namur, Belgium
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
FACILE SYNTHESIS; MESOPOROUS TIO2; ANATASE; MICROSPHERES; INSERTION; ELECTRODE; STORAGE; ANODE; NANORIBBONS; REACTIVITY;
D O I
10.1038/srep11557
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hierarchically structured porous TiO2-B spheres have been synthesized via a hydrothermal process using amorphous titania/oleylamine composites as a self-sacrificing template. The TiO2-B spheres are constructed by interconnected nanotubes and possess a high specific surface area of 295 m(2) g(-1). When evaluated as an anode material in lithium-half cells, the as-obtained TiO2-B material exhibits high and reversible lithium storage capacity of 270 mA h g(-1) at 1 degrees C (340 mA g(-1)), excellent rate capability of 221 mA h g(-1) at 10 degrees C, and long cycle life with over 70% capacity retention after 1000 cycles at 10 degrees C. The superior electrochemical performance of TiO2-B material strongly correlates to the synergetic superiorities with a combination of TiO2-B polymorph, hierarchically porous structure, interconnected nanotubes and spherical morphology. Post-mortem structural analyses reveal some discrete cubic LiTiO2 nanodots formed on the outer surfaces of TiO2-B nanotubes, which might account for the slight capacity loss upon prolonged electrochemical cycling.
引用
收藏
页数:8
相关论文
共 36 条
[1]   The Shape of TiO2-B Nanoparticles [J].
Andreev, Yuri G. ;
Panchmatia, Pooja M. ;
Liu, Zheng ;
Parker, Stephen C. ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (17) :6306-6312
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[4]   Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study [J].
Arrouvel, Corinne ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4778-4783
[5]   TiO2(B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance [J].
Beuvier, Thomas ;
Richard-Plouet, Mireille ;
Mancini-Le Granvalet, Maryline ;
Brousse, Thierry ;
Crosnier, Olivier ;
Brohan, Luc .
INORGANIC CHEMISTRY, 2010, 49 (18) :8457-8464
[6]   TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity [J].
Brutti, Sergio ;
Gentili, Valentina ;
Menard, Herve ;
Scrosati, Bruno ;
Bruce, Peter G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :322-327
[7]   Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm) [J].
Chen, Dehong ;
Cao, Lu ;
Huang, Fuzhi ;
Imperia, Paolo ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (12) :4438-4444
[8]   Thermodynamics of Lithium in TiO2(B) from First Principles [J].
Dalton, Andrew S. ;
Belak, Anna A. ;
Van der Ven, Anton .
CHEMISTRY OF MATERIALS, 2012, 24 (09) :1568-1574
[9]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[10]   Lithium Insertion in Nanostructured TiO2(B) Architectures [J].
Dylla, Anthony G. ;
Henkelman, Graeme ;
Stevenson, Keith J. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1104-1112