Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries

被引:804
作者
Deng, Da [1 ]
Kim, Min Gyu [2 ]
Lee, Jim Yang [1 ]
Cho, Jaephil [3 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Fac Engn, Singapore 119260, Singapore
[2] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea
[3] Ulsan Natl Inst Sci & Technol, Sch Energy Engn, Ulsan 689805, South Korea
基金
新加坡国家研究基金会;
关键词
NEGATIVE-ELECTRODE MATERIALS; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; CARBON NANOTUBES; HYDROTHERMAL SYNTHESIS; TITANIA NANOTUBES; AMORPHOUS OXIDE; TIN PHOSPHATE; PARTICLE-SIZE; HOLLOW CARBON;
D O I
10.1039/b823474d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is expected that the market dominance of lithium-ion batteries will continue for at least another decade as there are currently no competing alternatives with the versatility of lithium-ion batteries for powering mobile and portable devices; and for buffering the fluctuating supply of intermittent energy sources such as wind and solar. While the pursuit of higher energy density and higher power density materials constitute the bulk of current interest, there is increasing interest in durable active battery materials that can be produced with minimum environmental impact. It is with these considerations that TiO2- and Sn-based anode materials are most interesting candidates for fulfilling future green energy storage materials. This review will focus on the recent developments of nanostructured TiO2 and Sn-based anode materials, including rutile, anatase, TiO2 (B), and coated TiO2, and pristine SnO2, and SnO2/C, Sn(M)/C composites.
引用
收藏
页码:818 / 837
页数:20
相关论文
共 104 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[4]   TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :A139-A143
[5]   Novel porous anatase TiO2 nanorods and their high lithium electroactivity [J].
Bao, Shu-Juan ;
Bao, Qiao-Liang ;
Li, Chang-Ming ;
Dong, Zhi-Li .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1233-1238
[6]  
BAVYKIN DV, 2006, ADV MAT WEINHEIM, V18, P1
[7]   Impact of nanosizing on lithiated rutile TiO2 [J].
Borghols, Wouter J. H. ;
Wagemaker, Marnix ;
Lafont, Ugo ;
Kelder, Erik M. ;
Mulder, Fokko M. .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2949-2955
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]  
Chen Q, 2002, ADV MATER, V14, P1208, DOI 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO
[10]  
2-0