Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries

被引:804
作者
Deng, Da [1 ]
Kim, Min Gyu [2 ]
Lee, Jim Yang [1 ]
Cho, Jaephil [3 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Fac Engn, Singapore 119260, Singapore
[2] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea
[3] Ulsan Natl Inst Sci & Technol, Sch Energy Engn, Ulsan 689805, South Korea
基金
新加坡国家研究基金会;
关键词
NEGATIVE-ELECTRODE MATERIALS; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; CARBON NANOTUBES; HYDROTHERMAL SYNTHESIS; TITANIA NANOTUBES; AMORPHOUS OXIDE; TIN PHOSPHATE; PARTICLE-SIZE; HOLLOW CARBON;
D O I
10.1039/b823474d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is expected that the market dominance of lithium-ion batteries will continue for at least another decade as there are currently no competing alternatives with the versatility of lithium-ion batteries for powering mobile and portable devices; and for buffering the fluctuating supply of intermittent energy sources such as wind and solar. While the pursuit of higher energy density and higher power density materials constitute the bulk of current interest, there is increasing interest in durable active battery materials that can be produced with minimum environmental impact. It is with these considerations that TiO2- and Sn-based anode materials are most interesting candidates for fulfilling future green energy storage materials. This review will focus on the recent developments of nanostructured TiO2 and Sn-based anode materials, including rutile, anatase, TiO2 (B), and coated TiO2, and pristine SnO2, and SnO2/C, Sn(M)/C composites.
引用
收藏
页码:818 / 837
页数:20
相关论文
共 104 条
[31]   Nanocrystalline lithium manganese oxide spinel cathode for rechargeable lithium batteries [J].
Kang, SH ;
Goodenough, JB ;
Rabenberg, LK .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (05) :A49-A51
[32]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163
[33]  
Kasuga T, 1999, ADV MATER, V11, P1307, DOI 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO
[34]  
2-H
[35]   Lithium storage in nanostructured TiO2 made by hydrothermal growth [J].
Kavan, L ;
Kalbác, M ;
Zukalová, M ;
Exnar, I ;
Lorenzen, V ;
Nesper, R ;
Graetzel, M .
CHEMISTRY OF MATERIALS, 2004, 16 (03) :477-485
[36]   Critical size of a nano SnO2 electrode for Li-secondary battery [J].
Kim, C ;
Noh, M ;
Choi, M ;
Cho, J ;
Park, B .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3297-3301
[37]   A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries [J].
Kim, E ;
Son, D ;
Kim, TG ;
Cho, J ;
Park, B ;
Ryu, KS ;
Chang, SH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (44) :5987-5990
[38]   TiO2@Sn core-shell nanotubes for fast and high density Li-ion storage material [J].
Kim, Hyesun ;
Kim, Min Gyu ;
Shin, Tae Joo ;
Shin, Hyun-Jun ;
Cho, Jaephil .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1669-1672
[39]   Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials [J].
Kim, Hyesun ;
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (07) :771-775
[40]   Synthesis and electrochemical properties of Sn87Co13 alloys by NaBH4 and sodium naphthalenide reduction methods [J].
Kim, Hyunjung ;
Cho, Jaephil .
ELECTROCHIMICA ACTA, 2007, 52 (12) :4197-4201