MESSA: MEta-Server for protein Sequence Analysis

被引:36
作者
Cong, Qian [1 ,2 ]
Grishin, Nick V. [1 ,2 ,3 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Biophys, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
[3] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
BACTERIAL CYTOPLASMIC MEMBRANE; STRUCTURE PREDICTION; SECONDARY STRUCTURE; DISORDERED REGIONS; SIGNAL PEPTIDES; TOPOLOGY; DATABASE; ANNOTATION; INFERENCE; NETWORKS;
D O I
10.1186/1741-7007-10-82
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Computational sequence analysis, that is, prediction of local sequence properties, homologs, spatial structure and function from the sequence of a protein, offers an efficient way to obtain needed information about proteins under study. Since reliable prediction is usually based on the consensus of many computer programs, meta-severs have been developed to fit such needs. Most meta-servers focus on one aspect of sequence analysis, while others incorporate more information, such as PredictProtein for local sequence feature predictions, SMART for domain architecture and sequence motif annotation, and GeneSilico for secondary and spatial structure prediction. However, as predictions of local sequence properties, three-dimensional structure and function are usually intertwined, it is beneficial to address them together. Results: We developed a MEta-Server for protein Sequence Analysis (MESSA) to facilitate comprehensive protein sequence analysis and gather structural and functional predictions for a protein of interest. For an input sequence, the server exploits a number of select tools to predict local sequence properties, such as secondary structure, structurally disordered regions, coiled coils, signal peptides and transmembrane helices; detect homologous proteins and assign the query to a protein family; identify three-dimensional structure templates and generate structure models; and provide predictive statements about the protein's function, including functional annotations, Gene Ontology terms, enzyme classification and possible functionally associated proteins. We tested MESSA on the proteome of Candidatus Liberibacter asiaticus. Manual curation shows that three-dimensional structure models generated by MESSA covered around 75% of all the residues in this proteome and the function of 80% of all proteins could be predicted. Availability: MESSA is free for non-commercial use at http://prodata.swmed.edu/MESSA/
引用
收藏
页数:12
相关论文
共 67 条
[1]   Predictions without templates: New folds, secondary structure, and contacts in CASP5 [J].
Aloy, P ;
Stark, A ;
Hadley, S ;
Russell, RB .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 :436-456
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
[Anonymous], CURR PROTOC PROTEIN
[4]  
[Anonymous], NUCLEIC ACIDS RES
[5]   Reorganizing the protein space at the Universal Protein Resource (UniProt) [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Antunes, Ricardo ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bower, Lawrence ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Da Silva, Alan ;
Dimmer, Emily ;
Eberhardt, Ruth ;
Fazzini, Francesco ;
Fedotov, Alexander ;
Garavelli, John ;
Castro, Leyla Garcia ;
Gardner, Michael ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pontikos, Nikolas ;
Pundir, Sangya ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Wardell, Tony ;
Watkins, Xavier ;
Corbett, Matt ;
Donnelly, Mike ;
van Rensburg, Pieter ;
Goujon, Mickael ;
McWilliam, Hamish ;
Lopez, Rodrigo ;
Xenarios, Ioannis ;
Bougueleret, Lydie ;
Bridge, Alan ;
Poux, Sylvain ;
Redaschi, Nicole .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D71-D75
[6]   EFICAz2: enzyme function inference by a combined approach enhanced by machine learning [J].
Arakaki, Adrian K. ;
Huang, Ying ;
Skolnick, Jeffrey .
BMC BIOINFORMATICS, 2009, 10
[7]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[8]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[9]   The ENZYME database in 2000 [J].
Bairoch, A .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :304-305
[10]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]