Current status data with competing risks: Limiting distribution of the MLE

被引:25
作者
Groeneboom, Piet [1 ]
Maathuis, Marloes H. [2 ]
Wellner, Jon A. [3 ]
机构
[1] Delft Univ Technol, Dept Math, NL-2628 CD Delft, Netherlands
[2] ETH, Seminar Stat, CH-8092 Zurich, Switzerland
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
survival analysis; current status data; competing risks; maximum likelihood; limiting distribution;
D O I
10.1214/009053607000000983
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study nonparametric estimation for current status data with competing risks. Our main interest is in the nonparametric maximum likelihood estimator (MLE), and for comparison we also consider a simpler "naive estimator." Groeneboom, Maathuis and Wellner [Ann. Statist. (2008) 36 10311063] proved that both types of estimators converge globally and locally at rate n(1/3). We use these results to derive the local limiting distributions of the estimators. The limiting distribution of the naive estimator is given by the slopes of the convex minorants of correlated Brownian motion processes with parabolic drifts. The limiting distribution of the MLE involves a new self-induced limiting process. Finally, we present a simulation study showing that the MLE is superior to the naive estimator in terms of mean squared error, both for small sample sizes and asymptotically.
引用
收藏
页码:1064 / 1089
页数:26
相关论文
共 17 条
[11]   Maximum likelihood estimation of ordered multinomial parameters [J].
Jewell, NP ;
Kalbfleisch, JD .
BIOSTATISTICS, 2004, 5 (02) :291-306
[12]   Nonparametric estimation from current status data with competing risks [J].
Jewell, NP ;
Van der Laan, M ;
Henneman, T .
BIOMETRIKA, 2003, 90 (01) :183-197
[13]  
MAATHUIS MH, 2006, THESIS U WASHINGTON
[14]  
MAATHUIS MH, 2003, THESIS DELFT U TECHN
[15]  
Pollard D., 2012, Convergence of Stochastic Processes
[16]  
Shorack GR., 1986, Empirical processes with applications to statistics
[17]  
van der Vaart A., 1996, WEAK CONVERGENCE EMP