Cropping system influences on soil physical properties in the Great Plains

被引:34
作者
Pikul, JL
Schwartz, RC
Benjamin, JG
Baumhardt, RL
Merrill, S
机构
[1] USDA ARS, Brookings, SD 57006 USA
[2] USDA ARS, Bushland, TX 79012 USA
[3] USDA ARS, Akron, CO 80720 USA
[4] USDA ARS, Mandan, ND 58554 USA
关键词
soil bulk density; dry aggregate stability; rotary sieve; aggregate size distribution; water infiltration rate; water filled pore space; soil organic carbon;
D O I
10.1079/RAF2005122
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Agricultural systems produce both detrimental and beneficial effects on soil quality (SQ). We compared soil physical properties of long-term conventional (CON) and alternative (ALT) cropping systems near Akron, Colorado (CO); Brookings, South Dakota (SD); Bushland, Texas (TX); Fargo, North Dakota (ND); Mandan (ND); Mead, Nebraska (NE); Sidney, Montana (MT); and Swift Current, Saskatchewan (SK), Canada. Objectives were to quantify the changes in soil physical attributes in cropping systems and assess the potential of individual soil attributes as sensitive indicators of change in SQ. Soil samples were collected three times per year from each treatment at each site for one rotation cycle (4 years at Brookings and Mead). Water infiltration rates were measured. Soil bulk density (BD) and gravimetric water were measured at 0-7.5, 7.5-15, and 15-30 cm depth increments and water-filled pore space ratio (WFPS) was calculated. At six locations, a rotary sieve was used to separate soil (top 5 cm) into six aggregate size groups and calculate mean weight diameter (MWD) of dry aggregates. Under the CON system at Brookings, dry aggregates (> 19 mm) abraded into the smallest size class (< 0.4 mm) on sieving. In contrast, the large aggregates from the ALT system abraded into size classes between 2 and 6mm. Dry aggregate size distribution (DASD) shows promise as an indicator of SQ related to susceptibility of soil to wind erosion. Aggregates from CON were least stable in water. Soil C was greater under ALT than CON for both Brookings and Mead. At other locations, MWD of aggregates under continuous crop or no tillage (ALT systems) was greater than MWD under CON. There was no crop system effect on water infiltration rates for locations having the same tillage within cropping system. Tillage resulted in increased, decreased, or unchanged near-surface BD. Because there was significant temporal variation in water infiltration, MWD, and BD, conclusions based on a single point-in-time observation should be avoided. Elevated WFPS at Fargo, Brookings, and Mead may have resulted in anaerobic soil conditions during a portion of the year. Repeated measurements of WFPS or DASD revealed important temporal characteristics of SQ that could be used to judge soil condition as affected by management.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 45 条
[1]   A METHOD FOR MEASURING INCORPORATED CROP RESIDUE AND ASSOCIATED SOIL PROPERTIES [J].
ALLMARAS, RR ;
PIKUL, JL ;
KRAFT, JM ;
WILKINS, DE .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1988, 52 (04) :1128-1133
[2]  
Arshad MA, 1996, SSSA SPECIAL PUBLICA, V49, P123, DOI DOI 10.2136/SSSASPECPUB49.C7
[3]   ORGANIC-CARBON EFFECTS ON AVAILABLE WATER CAPACITY OF 3 SOIL TEXTURAL GROUPS [J].
BAUER, A ;
BLACK, AL .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (01) :248-254
[4]   EFFECT OF CROP-ROTATION AND FERTILIZATION ON SOME BIOLOGICAL PROPERTIES OF A LOAM IN SOUTHWESTERN SASKATCHEWAN [J].
BIEDERBECK, VO ;
CAMPBELL, CA ;
ZENTNER, RP .
CANADIAN JOURNAL OF SOIL SCIENCE, 1984, 64 (03) :355-367
[5]   MONTHLY AND YEARLY CHANGES IN AGGREGATE SIZE OF SURFACE SOILS [J].
BISAL, F ;
FERGUSON, WS .
CANADIAN JOURNAL OF SOIL SCIENCE, 1968, 48 (02) :159-+
[6]  
Blake G. R., 1986, Methods of soil analysis. Part 1. Physical and mineralogical methods, P363
[7]  
BLEVINS RL, 1983, J SOIL WATER CONSERV, V38, P301
[8]   THE INFLUENCE OF ORGANIC-MATTER ON SOIL AGGREGATION AND WATER INFILTRATION [J].
BOYLE, M ;
FRANKENBERGER, WT ;
STOLZY, LH .
JOURNAL OF PRODUCTION AGRICULTURE, 1989, 2 (04) :290-299
[9]   TILLAGE AND CROP-ROTATION EFFECT ON CHARACTERISTICS OF A SANDY SURFACE SOIL [J].
BRUCE, RR ;
LANGDALE, GW ;
DILLARD, AL .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1990, 54 (06) :1744-1747
[10]   SOIL SURFACE MODIFICATION BY BIOMASS INPUTS AFFECTING RAINFALL INFILTRATION [J].
BRUCE, RR ;
LANGDALE, GW ;
WEST, LT ;
MILLER, WP .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (05) :1614-1620