A geometric interpretation of the Metropolis-Hastings algorithm

被引:49
作者
Billera, LJ
Diaconis, P
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
10.1214/ss/1015346318
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Metropolis-Hastings algorithm transforms a given stochastic matrix into a reversible stochastic matrix with a prescribed stationary distribution. We show that this transformation gives the minimum distance solution in an L-1 metric.
引用
收藏
页码:335 / 339
页数:5
相关论文
共 12 条
[1]  
[Anonymous], CONT MATH
[2]  
[Anonymous], 1979, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[3]  
[Anonymous], 1996, Monte Carlo Concepts, Algorithms and Applications
[4]   What do we know about the metropolis algorithm? [J].
Diaconis, P ;
Saloff-Coste, L .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1998, 57 (01) :20-36
[5]  
Diaconis P, 2000, MICH MATH J, V48, P157
[6]  
Dongarra J, 2000, COMPUT SCI ENG, V2
[7]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[8]  
LIU J, 2001, MONTE CARLO TECHNIQU
[9]  
Mengersen KL, 1996, ANN STAT, V24, P101
[10]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092