MoO2/Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode

被引:149
作者
Bhaskar, Akkisetty [1 ]
Deepa, Melepurath [2 ]
Rao, Tata Narasinga [3 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Mat Sci & Engn, Yeddumailaram 502205, Andhra Pradesh, India
[2] Indian Inst Technol Hyderabad, Dept Chem, Yeddumailaram 502205, Andhra Pradesh, India
[3] Int Adv Res Ctr Powder Met & New Mat ARCI, Nanomat Ctr, Hyderabad 500005, Andhra Pradesh, India
关键词
anode; charge-discharge; lithium ion batteries; molybdenum dioxide; multiwalled carbon nanotubes; ELECTRODE MATERIALS; LITHIUM; PERFORMANCE; CHALLENGES; CONVERSION; COMPOSITE; GRAPHITE;
D O I
10.1021/am3031536
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A molybdenum dioxide/multiwalled carbon nanotubes (MoO2/MWCNT) hybrid composed of spherical flowerlike nanostructures of MoO2, interconnected by MWCNTs has been prepared by a one-step hydrothermal route. The growth of MoO2 nanoparticles into spherical floral shapes with a monoclinic crystalline structure is steered by the dioctyl sulfosuccinate surfactant. The one-dimensional electron transport pathways provided by MWCNTs, which are in direct contact with MoO2 nanostructures, impart an enhanced reversible lithium storage capacity (1143 mA h g(-1) at a current density of 100 mA g(-1) after 200 cycles), high rate capability (408 mA h g(-1) at a high C-rate of 1000 mA g(-1)) and good cycling stability to the MoO2/MWCNT hybrid relative to neat MoO2. Surface potential mapping of the electrodes by Kelvin probe force microscopy, revealed a lower localized work function for the MoO2/MWCNT hybrid as compared to the neat oxide. This makes the MoO2/MWCNT hybrid more easily oxidizable than neat MoO2. Such a distinctive topology achieved for the MoO2/MWCNT hybrid, wherein the MWCNTs prevent the agglomeration of MoO2 nanostructures and thus preserve good electrical connectivities, makes it different in terms of both morphology and performance from all previously reported MoO2-based anode materials to date.
引用
收藏
页码:2555 / 2566
页数:12
相关论文
共 40 条
[1]   THE WORK FUNCTION OF LITHIUM [J].
ANDERSON, PA .
PHYSICAL REVIEW, 1949, 75 (08) :1205-1207
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity [J].
Bai, Yu ;
Park, Il Song ;
Lee, Sook Jeong ;
Wen, Pu Shan ;
Bae, Tae Sung ;
Lee, Min Ho .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 89 :101-107
[4]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[5]   Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization [J].
Baskaran, D ;
Mays, JW ;
Bratcher, MS .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2138-2142
[6]   Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries [J].
Bhaskar, Akkisetty ;
Deepa, Melepurath ;
Rao, T. N. ;
Varadaraju, U. V. .
JOURNAL OF POWER SOURCES, 2012, 216 :169-178
[7]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[8]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[9]   Synthesis, characterization and lithium-storage performance of MoO2/carbon hybrid nanowires [J].
Cao, Qingsheng ;
Yang, Lichun ;
Lu, Xinchun ;
Mao, Jianjiang ;
Zhang, Yahong ;
Wu, Yuping ;
Tang, YI .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (14) :2807-2812
[10]   Fast Synthesis of α-MoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18) :8675-8678