Approximation algorithms for maximization problems arising in graph partitioning

被引:93
作者
Feige, U [1 ]
Langberg, M [1 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2001年 / 41卷 / 02期
关键词
D O I
10.1006/jagm.2001.1183
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G = (V,E), a weight function w: E --> R+, and a parameter k, we consider the problem of finding a subset U subset of or equal to V of size k that maximizes: Max-Vertex Cover(k) the weight of edges incident with vertices in U, Max-Dense Subgraph(k) the weight of edges in the subgraph induced by U, Max-Cut(k) the weight of edges cut by partition (U,V/U), Max-Uncut(k) the weight of edges not cut by the partition (U,V/U). For each of the above problems we present approximation algorithms based on semidefinite programming and obtain approximation ratios better than those previously published. In particular we show that if a graph has a vertex cover of size kappa, then one can select in polynomial time a set of kappa vertices that covers over 80% of the edges. (C) 2001 Elsevier Science.
引用
收藏
页码:174 / 211
页数:38
相关论文
共 32 条
[1]  
Ageev AA, 1999, LECT NOTES COMPUT SC, V1610, P17
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
[Anonymous], 1983, MATRIX COMPUTATION
[4]  
ASAHIRO Y, 1996, P 5 SCAND WORKSH ALG, V1097, P136
[5]   Approximation algorithms for MAX SAT: Yannakakis vs Goemans-Williamson [J].
Asano, T .
PROCEEDINGS OF THE FIFTH ISRAELI SYMPOSIUM ON THEORY OF COMPUTING AND SYSTEMS, 1997, :24-37
[6]   A threshold of in n for approximating set cover [J].
Feige, U .
JOURNAL OF THE ACM, 1998, 45 (04) :634-652
[7]  
Feige U., 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems, P182, DOI 10.1109/ISTCS.1995.377033
[8]  
Feige U, 2001, LECT NOTES COMPUT SC, V2076, P213
[9]   The dense k-subgraph problem [J].
Feige, U ;
Kortsarz, G ;
Peleg, D .
ALGORITHMICA, 2001, 29 (03) :410-421
[10]  
FEIGE U, CS9716 WEIZM I SCI