The dense k-subgraph problem

被引:336
作者
Feige, U [1 ]
Kortsarz, G
Peleg, D
机构
[1] Weizmann Inst, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
[2] Open Univ, Dept Comp Sci, Tel Aviv, Israel
关键词
approximation algorithms; dense subgraph;
D O I
10.1007/s004530010050
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers the problem of computing the dense k-vertex subgraph of a given graph, namely, the subgraph with the most edges. An approximation algorithm is developed for the problem, with approximation ratio O (n(delta)), for some delta < 1/3.
引用
收藏
页码:410 / 421
页数:12
相关论文
共 11 条
  • [1] DERANDOMIZED GRAPH PRODUCTS
    ALON, N
    FEIGE, U
    WIGDERSON, A
    ZUCKERMAN, D
    [J]. COMPUTATIONAL COMPLEXITY, 1995, 5 (01) : 60 - 75
  • [2] [Anonymous], 1996, LNCS
  • [3] Arora S., 1995, Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, P284, DOI 10.1145/225058.225140
  • [4] BIGGS N, 1993, ALGEBRAIC GRAPH THER
  • [5] Feige U., 1997, CS9716 WEIZM I
  • [6] A FAST PARAMETRIC MAXIMUM FLOW ALGORITHM AND APPLICATIONS
    GALLO, G
    GRIGORIADIS, MD
    TARJAN, RE
    [J]. SIAM JOURNAL ON COMPUTING, 1989, 18 (01) : 30 - 55
  • [7] Approximation algorithms for maximum dispersion
    Hassin, R
    Rubinstein, S
    Tamir, A
    [J]. OPERATIONS RESEARCH LETTERS, 1997, 21 (03) : 133 - 137
  • [8] Lawler E., 1976, Combinatorial Optimization: Networks and Matroids
  • [9] LEIGHTON FT, 1988, P 29 ANN IEEE S FDN, P422
  • [10] Marcus M., 1964, A Survey of Matrix Theory and Matrix Inequalities