In situ tracking of the nanoscale expansion of porous carbon electrodes

被引:54
作者
Arruda, Thomas M. [1 ]
Heon, Min [2 ,3 ]
Presser, Volker [2 ,3 ,4 ]
Hillesheim, Patrick C. [5 ]
Dai, Sheng [5 ]
Gogotsi, Yury [2 ,3 ]
Kalinin, Sergei V. [1 ]
Balke, Nina [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Drexel Univ, AJ Drexel Nanotechnol Inst, Philadelphia, PA 19104 USA
[4] INM Leibniz Inst New Mat, Energy Mat Grp, D-66123 Saarbrucken, Germany
[5] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
关键词
ATOMIC-FORCE MICROSCOPY; DOUBLE-LAYER CAPACITORS; NANOPOROUS CARBON; IONIC LIQUIDS; INTERFACE; ELECTROLYTES; ADSORPTION; CHARGE;
D O I
10.1039/c2ee23707e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical double layer capacitors (EDLC) are rapidly emerging as a promising energy storage technology offering extremely large power densities. Despite significant experimental progress, nanoscale operation mechanisms of the EDLCs remain poorly understood and it is difficult to separate processes at multiple time and length scales involved in operation including that of double layer charging and ionic mass transport. Here we explore the functionality of EDLC microporous carbon electrodes using a combination of classical electrochemical measurements and scanning probe microscopy based dilatometry, thus separating individual stages in charge/discharge processes based on strain generation. These methods allowed us to observe two distinct modes of EDLC charging, one fast charging of the double layer unassociated with strain, and another much slower mass transport related charging exhibiting significant sample volume changes. These studies open the pathway for the exploration of electrochemical systems with multiple processes involved in the charge and discharge, and investigation of the kinetics of those processes.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 39 条
[1]   The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries [J].
Arruda, Thomas M. ;
Kumar, Amit ;
Kalinin, Sergei V. ;
Jesse, Stephen .
NANOTECHNOLOGY, 2012, 23 (32)
[2]   Mapping Irreversible Electrochemical Processes on the Nanoscale: Ionic Phenomena in Li Ion Conductive Glass Ceramics [J].
Arruda, Thomas M. ;
Kumar, Amit ;
Kalinin, Sergei V. ;
Jesse, Stephen .
NANO LETTERS, 2011, 11 (10) :4161-4167
[3]   An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction [J].
Atkin, Rob ;
Borisenko, Natalia ;
Drueschler, Marcel ;
El Abedin, Sherif Zein ;
Endres, Frank ;
Hayes, Robert ;
Huber, Benedikt ;
Roling, Bernhard .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (15) :6849-6857
[4]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[5]   Double Layer in Ionic Liquids: Overscreening versus Crowding [J].
Bazant, Martin Z. ;
Storey, Brian D. ;
Kornyshev, Alexei A. .
PHYSICAL REVIEW LETTERS, 2011, 106 (04)
[6]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[7]   A HIGH-RESOLUTION DILATOMETER FOR INSITU STUDIES OF THE ELECTROINTERCALATION OF LAYERED MATERIALS [J].
BIBERACHER, W ;
LERF, A ;
BESENHARD, JO ;
MOHWALD, H ;
BUTZ, T .
MATERIALS RESEARCH BULLETIN, 1982, 17 (11) :1385-1392
[8]   Diffuse charge and Faradaic reactions in porous electrodes [J].
Biesheuvel, P. M. ;
Fu, Yeqing ;
Bazant, Martin Z. .
PHYSICAL REVIEW E, 2011, 83 (06)
[9]   Nonlinear dynamics of capacitive charging and desalination by porous electrodes [J].
Biesheuvel, P. M. ;
Bazant, M. Z. .
PHYSICAL REVIEW E, 2010, 81 (03)
[10]  
Burrell AK, 2007, GREEN CHEM, V9, P449, DOI 10.1039/b615950h