The binding of hormones and growth factors to their cell surface receptors leads to an orderly cascade of events leading to activation of cytoplasmic effector molecules. The mechanism of action of luteinizing hormone involves the stimulation of multiple signal transduction effector systems including adenylyl cyclase and inositol phospholipid-specific phospholipase C (PLC). This results in the formation of second messengers that activate cAMP-dependent. Ca2+-dependent and lipid-dependent protein kinases. Prostaglandin F-2 alpha activates PLC which increases intracellular calcium and activates protein kinase C. This results in the activation of a series of protein kinases in the mitogen-activated protein (MAP) kinase cascade, leading to the activation of nuclear transcription factors c-fos and c-jun. Hormone responsive effector system, therefore, operate by activating families of protein kinases which regulate cell metabolism secretion, and gene transcription. Growth factors activate specific receptor protein tyrosine kinases which recruit additional signaling molecules (phospholipase C gamma, phosphatidylinositol 3-kinase, Shc, Grb2, etc.) initiating a cascade of events mediated via MAP kinases. The signaling pathways activated by hormones interact or cross talk with the signaling pathways activated by growth factors. The diversity of cellular signaling mechanisms elicited by hormones and the potential for interactions with signals generated by growth factor receptor tyrosine kinases, may allow fine tuning of cellular responses during the life span of the corpus luteum.