Allosteric mechanisms can be distinguished using structural mass spectrometry

被引:121
作者
Dyachenko, Andrey [1 ,2 ]
Gruber, Ranit [2 ]
Shimon, Liat [1 ]
Horovitz, Amnon [2 ]
Sharon, Michal [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
chaperonins; Hill coefficient; CHAPERONIN; BINDING; HEMOGLOBIN; COOPERATIVITY; TRANSITIONS; STABILITY; COMPLEXES;
D O I
10.1073/pnas.1302395110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The activity of many proteins, including metabolic enzymes, molecular machines, and ion channels, is often regulated by conformational changes that are induced or stabilized by ligand binding. In cases of multimeric proteins, such allosteric regulation has often been described by the concerted Monod-Wyman-Changeux and sequential Koshland-Nemethy-Filmer classic models of cooperativity. Despite the important functional implications of the mechanism of cooperativity, it has been impossible in many cases to distinguish between these various allosteric models using ensemble measurements of ligand binding in bulk protein solutions. Here, we demonstrate that structural MS offers a way to break this impasse by providing the full distribution of ligand-bound states of a protein complex. Given this distribution, it is possible to determine all the binding constants of a ligand to a highly multimeric cooperative system, and thereby infer its allosteric mechanism. Our approach to the dissection of allosteric mechanisms relies on advances in MS-which provide the required resolution of ligand-bound states-and in data analysis. We validated our approach using the well-characterized Escherichia coli chaperone GroEL, a double-heptameric ring containing 14 ATP binding sites, which has become a paradigm for molecular machines. The values of the 14 binding constants of ATP to GroEL were determined, and the ATP-loading pathway of the chaperone was characterized. The methodology and analyses presented here are directly applicable to numerous other cooperative systems and are therefore expected to promote further research on allosteric systems.
引用
收藏
页码:7235 / 7239
页数:5
相关论文
共 27 条
[1]  
[Anonymous], [No title captured]
[2]   αB-Crystallin Polydispersity Is a Consequence of Unbiased Quaternary Dynamics [J].
Baldwin, Andrew J. ;
Lioe, Hadi ;
Robinson, Carol V. ;
Kay, Lewis E. ;
Benesch, Justin L. P. .
JOURNAL OF MOLECULAR BIOLOGY, 2011, 413 (02) :297-309
[3]   DIRECT, REAL-TIME MEASUREMENT OF RAPID INORGANIC-PHOSPHATE RELEASE USING A NOVEL FLUORESCENT-PROBE AND ITS APPLICATION TO ACTOMYOSIN SUBFRAGMENT-1 ATPASE [J].
BRUNE, M ;
HUNTER, JL ;
CORRIE, JET ;
WEBB, MR .
BIOCHEMISTRY, 1994, 33 (27) :8262-8271
[4]   Allostery and the Monod-Wyman-Changeux Model After 50 Years [J].
Changeux, Jean-Pierre .
ANNUAL REVIEW OF BIOPHYSICS, VOL 41, 2012, 41 :103-133
[5]   Allosteric mechanisms of signal transduction [J].
Changeux, JP ;
Edelstein, SJ .
SCIENCE, 2005, 308 (5727) :1424-1428
[6]   Collisional cooling of large ions in electrospray mass spectrometry [J].
Chernushevich, IV ;
Thomson, BA .
ANALYTICAL CHEMISTRY, 2004, 76 (06) :1754-1760
[7]   Is cooperative oxygen binding by hemoglobin really understood? [J].
Eaton, WA ;
Henry, ER ;
Hofrichter, J ;
Mozzarelli, A .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (04) :351-358
[8]   ELECTROSPRAY IONIZATION FOR MASS-SPECTROMETRY OF LARGE BIOMOLECULES [J].
FENN, JB ;
MANN, M ;
MENG, CK ;
WONG, SF ;
WHITEHOUSE, CM .
SCIENCE, 1989, 246 (4926) :64-71
[9]   Allosteric regulation of chaperonins [J].
Horovitz, A ;
Willison, KR .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (06) :646-651
[10]  
Kirshenbaum Noam, 2010, J Vis Exp, DOI 10.3791/1954