Alternate FGF2-ERK1/2 signaling pathways in retinal photoreceptor and glial cells in vitro

被引:63
作者
Kinkl, N [1 ]
Sahel, J [1 ]
Hicks, D [1 ]
机构
[1] Univ Strasbourg, Ctr Hosp Reg, INSERM,Clin Med A, Lab Physiopathol Cellulaire & Mol Retine,EMI 9918, F-67091 Strasbourg, France
关键词
D O I
10.1074/jbc.M105256200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Basic fibroblast growth factor (FGF2) stimulates photoreceptor survival in vivo and in vitro, but the molecular signaling mechanism(s) involved are unknown. Immunohistochemical and immunoblotting analyses of pure photoreceptors, inner retinal neurons, and Muller glial cells (MGC) in vitro revealed differential expression of the high affinity FGF receptors (FGFR1-4), as well as many cytoplasmic signaling intermediates known to mediate the extracellular signal-regulated kinase (ERK1/2) pathway. FGF2-induced tyrosine phosphorylation in vitro exhibited distinct profiles for each culture type, and FGF2-induced ERK1/2 activation was observed for all three preparations. Whereas U0126, a specific inhibitor of ERK kinase (MEK), completely abolished FGF2-induced ERK1/2 tyrosine phosphorylation and survival in cultured photoreceptors, persistent ERK1/2 phosphorylation was observed in cultured inner retinal cells and MGC. Furthermore U0126 treatment entirely blocked nerve growth factor-induced ERK1/2 activation in MGC, as well as FGF2-induced ERK1/2 activation in cerebral glial cells. Taken together, these data indicate that FGF2-induced ERK1/2 activation is entirely mediated by MEK within photoreceptors, which is responsible for FGF2-stimulated photoreceptor survival. In contrast, inner retina/glia possess alternative, cell type, and growth factor-specific MEK-independent ERK1/2 activation pathways. Hence signaling and biological effects elicited by FGF2 within retina are mediated by cell type-specific pathways.
引用
收藏
页码:43871 / 43878
页数:8
相关论文
共 68 条
[1]   BASIC FIBROBLAST GROWTH-FACTOR PREVENTS DEATH OF LESIONED CHOLINERGIC NEURONS INVIVO [J].
ANDERSON, KJ ;
DAM, D ;
LEE, S ;
COTMAN, CW .
NATURE, 1988, 332 (6162) :360-361
[2]   RAF-1 IS A POTENTIAL SUBSTRATE FOR MITOGEN-ACTIVATED PROTEIN-KINASE INVIVO [J].
ANDERSON, NG ;
PING, LI ;
MARSDEN, LA ;
WILLIAMS, N ;
ROBERTS, TM ;
STURGILL, TW .
BIOCHEMICAL JOURNAL, 1991, 277 :573-576
[3]  
[Anonymous], 1987, NEUROCHEMISTRY PRACT
[4]   PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: Regulation of proliferation and differentiation by multiple intracellular signaling pathways [J].
Baron, W ;
Metz, B ;
Bansal, R ;
Hoekstra, D ;
de Vries, H .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (03) :314-329
[5]   THE FGF FAMILY OF GROWTH-FACTORS AND ONCOGENES [J].
BASILICO, C ;
MOSCATELLI, D .
ADVANCES IN CANCER RESEARCH, 1992, 59 :115-165
[6]  
Bhat NR, 1996, J NEUROCHEM, V66, P1986
[7]   SIGNAL-TRANSDUCTION VIA THE MAP KINASES - PROCEED AT YOUR OWN RSK [J].
BLENIS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :5889-5892
[8]   DIVERSITY IN FUNCTION AND REGULATION OF MAP KINASE PATHWAYS [J].
BLUMER, KJ ;
JOHNSON, GL .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (06) :236-240
[9]   ERKS - A FAMILY OF PROTEIN-SERINE THREONINE KINASES THAT ARE ACTIVATED AND TYROSINE PHOSPHORYLATED IN RESPONSE TO INSULIN AND NGF [J].
BOULTON, TG ;
NYE, SH ;
ROBBINS, DJ ;
IP, NY ;
RADZIEJEWSKA, E ;
MORGENBESSER, SD ;
DEPINHO, RA ;
PANAYOTATOS, N ;
COBB, MH ;
YANCOPOULOS, GD .
CELL, 1991, 65 (04) :663-675
[10]   DIFFERENTIAL ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE IN RESPONSE TO BASIC FIBROBLAST GROWTH-FACTOR IN SKELETAL-MUSCLE CELLS [J].
CAMPBELL, JS ;
WENDEROTH, MP ;
HAUSCHKA, SD ;
KREBS, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :870-874