Analysis of Regional Cerebral Blood Flow Data to Discriminate among Alzheimer's Disease, Frontotemporal Dementia, and Elderly Controls: A Multi-Block Barycentric Discriminant Analysis (MUBADA) Methodology

被引:21
作者
Abdi, Herve [1 ,2 ]
Williams, Lynne J. [3 ]
Beaton, Derek [2 ]
Posamentier, Mette T. [2 ]
Harris, Thomas S. [1 ]
Krishnan, Anjali [4 ]
Devous, Michael D., Sr. [1 ,2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Nucl Med Ctr, Dallas, TX 75390 USA
[2] Univ Texas Dallas, Program Cognit & Neurosci, Dallas, TX USA
[3] Baycrest, Rotman Res Inst, Toronto, ON, Canada
[4] Univ Colorado, Inst Cognit Sci, Boulder, CO 80309 USA
关键词
BADA; dementia; discriminant analysis; MUBADA; multiblock analysis; neuroimaging; partial least squares correlation; PET; PLS methods; SPECT; CLASSIFICATION; TUTORIAL;
D O I
10.3233/JAD-2012-112111
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We present a generalization of mean-centered partial least squares correlation called multiblock barycentric discriminant analysis (MUBADA) that integrates multiple regions of interest (ROIs) to analyze functional brain images of cerebral blood flow or metabolism obtained with SPECT or PET. To illustrate MUBADA we analyzed data from 104 participants comprising Alzheimer's disease (AD) patients, frontotemporal dementia (FTD) patients, and elderly normal controls. Brain images were analyzed via 28 ROIs (59,845 voxels) selected for clinical relevance. This is a discriminant analysis (DA) question with several blocks (one per ROI) and with more variables than observations, a configuration that precludes using DA. MUBADA revealed two factors explaining 74% and 26% of the total variance: Factor 1 isolated FTD, and Factor 2 isolated AD. A random effects model correctly classified 64% (chance = 33%) of "new" participants (p < 0.0001). MUBADA identified ROIs that best discriminated groups: ROIs separating FTD were bilateral inferior, middle frontal, left inferior, and middle temporal gyri, while ROIs separating AD were bilateral thalamus, inferior parietal gyrus, inferior temporal gyrus, left precuneus, middle frontal, and middle temporal gyri. MUBADA classified participants at levels comparable to standard methods (i.e., SVM, PCA-LDA, and PLS-DA) but provided information (e. g., discriminative ROIs and voxels) not easily accessible to these methods.
引用
收藏
页码:S189 / S201
页数:13
相关论文
共 40 条
[21]  
Hall M., 2009, SIGKDD Explor Newsl, V11, P10, DOI DOI 10.1145/1656274.1656278
[22]  
Hastie T., 2008, The Elements of Statistical Learning
[23]  
Jagust William, 2006, Alzheimers Dement, V2, P36, DOI 10.1016/j.jalz.2005.11.002
[24]   Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review [J].
Krishnan, Anjali ;
Williams, Lynne J. ;
McIntosh, Anthony Randal ;
Abdi, Herve .
NEUROIMAGE, 2011, 56 (02) :455-475
[25]   Partial least squares analysis of neuroimaging data: applications and advances [J].
McIntosh, AR ;
Lobaugh, NJ .
NEUROIMAGE, 2004, 23 :S250-S263
[26]  
MCKHANN G, 1984, NEUROLOGY, V34, P939, DOI 10.1212/WNL.34.7.939
[27]   Revealing representational content with pattern-information fMRIan introductory guide [J].
Mur, Marieke ;
Bandettini, Peter A. ;
Kriegeskorte, Nikolaus .
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2009, 4 (01) :101-109
[28]   Frontotemporal lobar degeneration - A consensus on clinical diagnostic criteria [J].
Neary, D ;
Snowden, JS ;
Gustafson, L ;
Passant, U ;
Stuss, D ;
Black, S ;
Freedman, M ;
Kertesz, A ;
Robert, PH ;
Albert, M ;
Boone, K ;
Miller, BL ;
Cummings, J ;
Benson, DF .
NEUROLOGY, 1998, 51 (06) :1546-1554
[29]   Theoretical, statistical, and practical perspectives on pattern-based classification amoroaches to the analysis of functional neuroimaging data [J].
O'Toole, Alice J. ;
Jiang, Fang ;
Abdi, Herve ;
Penard, Nils ;
Dunlop, Joseph P. ;
Parent, Marc A. .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2007, 19 (11) :1735-1752
[30]   Machine learning classifiers and fMRI: A tutorial overview [J].
Pereira, Francisco ;
Mitchell, Tom ;
Botvinick, Matthew .
NEUROIMAGE, 2009, 45 (01) :S199-S209