Asymptotic fixed point theory and the beer barrel theorem

被引:7
作者
Mallet-Paret, John [1 ]
Nussbaum, Roger D. [2 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
Asymptotic fixed point theory; fixed point index; generalized Lefschetz number; mod p theorem;
D O I
10.1007/s11784-008-0095-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Sections 2 and 3 of this paper we refine and generalize theorems of Nussbaum (see [42]) concerning the approximate fixed point index and the fixed point index class. In Section 4 we indicate how these results imply a wide variety of asymptotic fixed point theorems. In Section 5 we prove a generalization of the mod p theorem: if p is a prime number, f belongs to the fixed point index class and f satisfies certain natural hypothesis, then the fixed point index of f p is congruent mod p to the fixed point index of f. In Section 6 we give a counterexample to part of an asymptotic fixed point theorem of A. Tromba [55]. Sections 2, 3, and 4 comprise both new and expository material. Sections 5 and 6 comprise new results.
引用
收藏
页码:203 / 245
页数:43
相关论文
共 55 条
[21]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[22]  
Hale J.K., 1988, MATH SURVEYS MONOGR, V25
[23]   FIXED-POINT THEOREMS AND DISSIPATIVE PROCESSES [J].
HALE, JK ;
LOPES, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 13 (02) :391-402
[24]   THEORY OF A GENERAL CLASS OF DISSIPATIVE PROCESSES [J].
HALE, JK ;
SLEMROD, M ;
LASALLE, JP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 39 (01) :177-&
[25]  
HANNER O, 1952, ARK MAT, V2, P315
[26]  
Hanner O., 1951, Ark. Mat, V1, P389
[28]  
Hu S-T., 1965, Theory of retracts
[29]  
JONES GS, 1963, CONTRIBUTIONS DIFFER, V2, P385
[30]  
JONES GS, 1962, J MATH ANAL APPL, V4, P440