Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures

被引:140
作者
Qiu, Bo [1 ,3 ]
Bao, Hua [1 ,3 ]
Zhang, Gengqiang [2 ,3 ]
Wu, Yue [2 ,3 ]
Ruan, Xiulin [1 ,3 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Thermal conductivity; Molecular dynamics; Thermoelectrics; Nanostructure; THERMOELECTRIC-MATERIALS; SILICON NANOWIRES; PERFORMANCE; DECOMPOSITION; TEMPERATURE;
D O I
10.1016/j.commatsci.2011.08.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, molecular dynamics (MD) simulations are performed to predict the lattice thermal conductivity of PbTe bulk and nanowires. The thermal conductivity of PbTe bulk is first studied in the temperature range 300-800 K. Excellent agreement with experiments is found in the entire temperature range when a small vacancy concentration is taken into consideration. By studying various configurations of vacancies, it is found that the thermal conductivity in PbTe bulk is more sensitive to the concentration rather than the type and distribution of vacancies. Spectral phonon relaxation times and mean free paths in PbTe bulk are obtained using the spectral energy density (SED) approach. It is revealed that the majority of thermal conductivity in PbTe is contributed by acoustic phonon modes with mean free paths below 100 nm. The spectral results at elevated temperatures indicate molecular scale feature sizes (less than 10 nm) are needed to achieve low thermal conductivity for PbTe. Simulations on PbTe nanowires with diameters up to 12 nm show moderate reduction in thermal conductivity as compared to bulk, depending on diameter, surface conditions and temperature. (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 59 条
[1]   Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe [J].
Ahmad, Salameh ;
Mahanti, S. D. .
PHYSICAL REVIEW B, 2010, 81 (16)
[2]  
Allen M. P., 1987, COMPUTER SIMULATION
[3]   Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics:: Enhanced performance in Pb1-xSnxTe-PbS [J].
Androulakis, John ;
Lin, Chia-Her ;
Kong, Hun-Jin ;
Uher, Ctirad ;
Wu, Chun-I ;
Hogan, Timothy ;
Cook, Bruce A. ;
Caillat, Thierry ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (31) :9780-9788
[4]   Molecular-dynamics prediction of the thermal conductivity of thin InP nanowires: Similarities to Si [J].
Carrete, J. ;
Longo, R. C. ;
Varela, L. M. ;
Rino, J. P. ;
Gallego, L. J. .
PHYSICAL REVIEW B, 2009, 80 (15)
[5]   Finite size effects in determination of thermal conductivities: Comparing molecular dynamics results with simple models [J].
Chantrenne, P ;
Barrat, JL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (04) :577-585
[6]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[7]   Molecular-dynamics simulation of lattice thermal conductivity in Pb1-xSnxTe and Pb1-xGexTe at high temperature [J].
Chonan, T. ;
Katayama, S. .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (06)
[8]   Thermal Conductivity of MgO Periclase from Equilibrium First Principles Molecular Dynamics [J].
de Koker, Nico .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[9]  
Delaire O., ARXIV11032564V2
[10]   Atomistic Simulations of Heat Transport in Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)