High resolution association mapping of quantitative trait loci: A population-based approach

被引:16
作者
Fan, RZ
Jung, JS
Jin, L
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Human Genet, Pittsburgh, PA 15261 USA
关键词
D O I
10.1534/genetics.105.046417
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In this article, population-based regression models are proposed for high-resolution linkage disequilibrium mapping of quantitative trait loci (QTL). Two regression models, the "genotype effect model" and the "additive effect model," are proposed to model the association between the markers and the trait locus. The marker can be either diallelic or multiallelic. If only one marker is used, the method is similar to a classical setting by Nielsen and Weir, and the additive effect model is equivalent to the haplotype trend regression (HTR) method by Zaykin et al. If two/multiple marker data with phase ambiguity are used in the analysis, the proposed models can be used to analyze the data directly. By analytical formulas, we show that the genotype effect model can be used to model the additive and dominance effects simultaneously; the additive effect model takes care of the additive effect only. On the basis of the two models, F-test statistics are proposed to test association between the QTL and markers. By a simulation study, we show that the two models have reasonable type I error rates for a data set of moderate sample size. The noncentrality parameter approximations of F-test statistics are derived to make power calculation and comparison. By a simulation study, it is found that the noncentrality parameter approximations of F-test statistics work very well. Using the noncentrality parameter approximations, we compare the power of the two models with that of the HTR. In addition, a simulation study is performed to make a comparison on the basis of the haplotype frequencies of 10 SNPs of angiotensin-1 converting enzyme (ACE) genes.
引用
收藏
页码:663 / 686
页数:24
相关论文
共 56 条
[1]   A general test of association for quantitative traits in nuclear families [J].
Abecasis, GR ;
Cardon, LR ;
Cookson, WOC .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (01) :279-292
[2]   The power to detect linkage disequilibrium with quantitative traits in selected samples [J].
Abecasis, GR ;
Cookson, WOC ;
Cardon, LR .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (06) :1463-1474
[3]   Pedigree tests of transmission disequilibrium (Reprinted from European Journal of Human Genetics, Vol 8, pg 545-551,2000) [J].
Abecasis, Goncalo R. ;
Cookson, William O. C. ;
Cardon, Lon R. .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 :S40-S44
[4]   Patterns of linkage disequilibrium in the human genome [J].
Ardlie, KG ;
Kruglyak, L ;
Seielstad, M .
NATURE REVIEWS GENETICS, 2002, 3 (04) :299-309
[5]   Hot and cold spots of recombination in the human genome: The reason we should find them and how this can be achieved [J].
Arnheim, N ;
Calabrese, P ;
Nordborg, M .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (01) :5-16
[6]  
BENNETT JH, 1954, ANN EUGENIC, V18, P311
[7]   THE USE OF MEASURED GENOTYPE INFORMATION IN THE ANALYSIS OF QUANTITATIVE PHENOTYPES IN MAN .1. MODELS AND ANALYTICAL METHODS [J].
BOERWINKLE, E ;
CHAKRABORTY, R ;
SING, CF .
ANNALS OF HUMAN GENETICS, 1986, 50 :181-194
[8]   Association testing in a linked region using large pedigrees [J].
Cantor, RM ;
Chen, GK ;
Pajukanta, P ;
Lange, K .
AMERICAN JOURNAL OF HUMAN GENETICS, 2005, 76 (03) :538-542
[9]   Use of unphased multilocus genotype data in indirect association studies [J].
Clayton, D ;
Chapman, J ;
Cooper, J .
GENETIC EPIDEMIOLOGY, 2004, 27 (04) :415-428
[10]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158