Bottom-Contact Poly(3,3′′′-didodecylquaterthiophene) Thin-Film Transistors with Gold Source-Drain Electrodes Modified by Alkanethiol Monolayers

被引:10
作者
Cai, Qin Jia [1 ]
Chan-Park, Mary B. [1 ]
Lu, Zhi Song [2 ]
Li, Chang Ming [2 ]
Ong, Beng S. [3 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Div Chem & Biomol Engn, Singapore 637459, Singapore
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Div Bioengn, Singapore 637457, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
D O I
10.1021/la8009942
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of alkanethiol monolayers (CH3(CH2)(n-1)SH, n = 4, 6, 8, 10, 12, 14, 16) were used to modify gold source-drain electrode surfaces for bottom-contactpoly(3,3'''-didodecylquaterthiophene) (PQT-12) thin-film transistors (TFFs). The device mobilities of TFTs were significantly increased from similar to 0.015 cm(2) V-1 s(-1) for bare electrode TFTs to a maximum of similar to 0.1 cm(2) V-1 s(-1) for the n = 8 monolayer devices. The mobilities of devices with alkanethiol modified An electrodes varied parabolically with alkyl length with values of 0.06, 0.1, and 0.04 cm(2) V-1 s(-1) at n = 4, 8, and 16, respectively. Atomic force microscopy investigations reveal that alkanethiol electrode surface modifications promote polycrystalline PQT-12 morphologies at electrode/PQT-12 contacts, which probably increase the density of states of the PQT-12 semiconductor at the interfaces. The contact resistance of TFTs is strongly modulated by the surface modification and strongly varies with the alkanethiol chain length. The surface modifications of electrodes appear to significantly improve the charge injection, with consequent substantial improvement in device performance.
引用
收藏
页码:11889 / 11894
页数:6
相关论文
共 52 条
[41]   Mobility-dependent charge injection into an organic semiconductor [J].
Shen, YL ;
Klein, MW ;
Jacobs, DB ;
Scott, JC ;
Malliaras, GG .
PHYSICAL REVIEW LETTERS, 2001, 86 (17) :3867-3870
[42]   Device physics of Solution-processed organic field-effect transistors [J].
Sirringhaus, H .
ADVANCED MATERIALS, 2005, 17 (20) :2411-2425
[43]   Charge injection across self-assembly monolayers in organic field-effect transistors: Odd-even effects [J].
Stoliar, Pablo ;
Kshirsagar, Rajendra ;
Massi, Massimiliano ;
Annibale, Paolo ;
Albonetti, Cristiano ;
de Leeuw, Dago M. ;
Biscarini, Fabio .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (20) :6477-6484
[44]   Conducting polymers - The benefit of order [J].
Street, RA .
NATURE MATERIALS, 2006, 5 (03) :171-172
[45]   Transport in polycrystalline polymer thin-film transistors [J].
Street, RA ;
Northrup, JE ;
Salleo, A .
PHYSICAL REVIEW B, 2005, 71 (16)
[46]  
Sze S. M., 2007, PHYS SEMICONDUCTOR D
[47]   Impact of electrode contamination on the α-NPD/Au hole injection barrier [J].
Wan, A ;
Hwang, J ;
Amy, F ;
Kahn, A .
ORGANIC ELECTRONICS, 2005, 6 (01) :47-54
[48]  
Wang WY, 2003, PHYS REV B, V68, DOI [10.1103/PhysRevB.68.035416, 10.1103/PhysRevB.68.184105]
[49]   Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity:: π-bond-conjugated polymers versus π-π-stacked discotics [J].
Warman, JM ;
de Haas, MP ;
Dicker, G ;
Grozema, FC ;
Piris, J ;
Debije, MG .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4600-4609
[50]   Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors [J].
Wu, YO ;
Liu, P ;
Ong, BS ;
Srikumar, T ;
Zhao, N ;
Botton, G ;
Zhu, SP .
APPLIED PHYSICS LETTERS, 2005, 86 (14) :1-3