Estimation of the Orientation Distribution Function from diffusional kurtosis imaging

被引:127
作者
Lazar, Mariana [1 ]
Jensen, Jens H. [1 ,2 ]
Xuan, Liang [1 ]
Helpern, Joseph A. [1 ,3 ]
机构
[1] NYU, Sch Med, Dept Radiol, Ctr Biomed Imaging, New York, NY 10016 USA
[2] NYU, Sch Med, Dept Physiol & Neurosci, New York, NY 10016 USA
[3] Nathan S Kline Inst Psychiat Res, Ctr Adv Brain Imaging, Orangeburg, NY 10962 USA
关键词
diffusion; kurtosis; fiber crossing; orientation distribution function;
D O I
10.1002/mrm.21725
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The Orientation Distribution Function (ODF) is used to describe the directionality of multimodal diffusion in regions with complex fiber architecture present in brain and other biological tissues. In this study, an approximation for the ODF of water diffusion from diffusional kurtosis imaging (DKI) is presented. DKI requires only a relatively limited number of diffusion measurements and, for the brain, b values no higher than 2500 s/mm(2). The DKI-based ODF approximation is decomposed into two components representing the Gaussian and non-Gaussian (NG) diffusion contributions, respectively. Simulations of multiple fiber configurations show that both the total and the NG-ODF are able to resolve the orientations of the component fibers, with the NG-ODF being the most sensitive to profiling the fibers' directions. Orientation maps obtained for in vivo brain imaging data demonstrate multiple fiber components in brain regions with complex anatomy. The results appear to be in agreement with known white matter architecture.
引用
收藏
页码:774 / 781
页数:8
相关论文
共 18 条
[1]   Multiple-fiber reconstruction algorithms for diffusion MRI [J].
Alexander, DC .
WHITE MATTER IN COGNITIVE NEUROSCIENCE: ADVANCES IN DIFFUSION TENSOR IMAGING AND ITS APPLICATIONS, 2005, 1064 :113-+
[2]   Measurement of fiber orientation distributions using high angular resolution diffusion imaging [J].
Anderson, AW .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (05) :1194-1206
[3]   Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review [J].
Basser, PJ ;
Jones, DK .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :456-467
[4]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[5]   Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis [J].
Hess, Christopher P. ;
Mukherjee, Pratik ;
Han, Eric T. ;
Xu, Duan ;
Vigneron, Daniel B. .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (01) :104-117
[6]   Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging [J].
Jensen, JH ;
Helpern, JA ;
Ramani, A ;
Lu, HZ ;
Kaczynski, K .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (06) :1432-1440
[7]   NMR SELF-DIFFUSION STUDIES IN HETEROGENEOUS SYSTEMS [J].
KARGER, J .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1985, 23 (1-4) :129-148
[8]   Boosting the sampling efficiency of q-ball imaging using multiple wavevector fusion [J].
Khachaturian, Mark H. ;
Wisco, Jonathan J. ;
Tuch, David S. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (02) :289-296
[9]   Is the "biexponential diffusion" bilexponential? [J].
Kiselev, Valerij G. ;
Il'yasov, Kamil A. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 57 (03) :464-469
[10]   Diffusion tensor imaging: Concepts and applications [J].
Le Bihan, D ;
Mangin, JF ;
Poupon, C ;
Clark, CA ;
Pappata, S ;
Molko, N ;
Chabriat, H .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2001, 13 (04) :534-546