Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands

被引:86
作者
Joo, NS
Irokawa, T
Robbins, RC
Wine, JJ
机构
[1] Stanford Univ, Cyst Fibrosis Res Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Cardiothorac Surg & Sch Med, Stanford, CA 94305 USA
关键词
D O I
10.1074/jbc.M512766200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human airways and glands express the anion channel cystic fibrosis transmembrane conductance regulator, CFTR, and the epithelial Na+ channel, ENaC. Cystic fibrosis (CF) airway glands fail to secrete mucus in response to vasoactive intestinal peptide or forskolin; the failure was attributed to loss of CFTR-mediated anion and fluid secretion. Alternatively, CF glands might secrete acinar fluid via CFTR-independent pathways, but the exit of mucus from the glands could be blocked by hyperabsorption of fluid in the gland ducts. This could occur because CFTR loss can disinhibit ENaC, and ENaC activity can drive absorption. To test these two hypotheses, we measured single gland mucus secretion optically and applied ENaC inhibitors to determine whether they augmented secretion. Human CF glands were pretreated with benzamil and then stimulated with forskolin in the continued presence of benzamil. Benzamil did not rescue the lack of secretion to forskolin ( 50 glands, 6 CF subjects) nor did it increase the rate of cholinergically mediated mucus secretion from CF glands. Finally, neither benzamil nor amiloride increased forskolin-stimulated mucus secretion from porcine submucosal glands ( 75 glands, 7 pigs). One possible explanation for these results is that ENaC within the gland ducts was not active in our experiments. Consistent with that possibility, we discovered that human airway glands express Kunitz-type and non-Kunitz serine protease inhibitors, which might prevent proteolytic activation of ENaC. Our results suggest that CF glands do not display excessive, ENaC-mediated fluid absorption, leaving defective, anion-mediated fluid secretion as the most likely mechanism for defective mucus secretion from CF glands.
引用
收藏
页码:7392 / 7398
页数:7
相关论文
共 29 条
[21]   Effects of ion transport inhibitors on MCh-mediated secretion from porcine airway submucosal glands [J].
Phillips, JE ;
Hey, JA ;
Corboz, MR .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 93 (03) :873-881
[22]   Functional interaction of CFTR and ENaC in sweat glands [J].
Reddy, MM ;
Quinton, PM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2003, 445 (04) :499-503
[23]   Submucosal gland dysfunction as a primary defect in cystic fibrosis [J].
Salinas, D ;
Haggie, PM ;
Thiagarajah, JR ;
Song, YL ;
Rosbe, K ;
Finkbeiner, WE ;
Nielson, DW ;
Verkman, AS .
FASEB JOURNAL, 2004, 18 (15) :431-+
[24]   Most basal I-sc in Calu-3 human airway cells is bicarbonate-dependent Cl- secretion [J].
Singh, M ;
Krouse, M ;
Moon, S ;
Wine, JJ .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1997, 272 (04) :L690-L698
[25]  
SONG Y, 2006, IN PRESS AM J PHYSL
[26]   CFTR AS A CAMP-DEPENDENT REGULATOR OF SODIUM-CHANNELS [J].
STUTTS, MJ ;
CANESSA, CM ;
OLSEN, JC ;
HAMRICK, M ;
COHN, JA ;
ROSSIER, BC ;
BOUCHER, RC .
SCIENCE, 1995, 269 (5225) :847-850
[27]   An epithelial serine protease activates the amiloride-sensitive sodium channel [J].
Vallet, V ;
Chraibi, A ;
Gaeggeler, HP ;
Horisberger, JD ;
Rossier, BC .
NATURE, 1997, 389 (6651) :607-610
[28]  
Wine Jeffrey J, 2004, Proc Am Thorac Soc, V1, P47, DOI 10.1513/pats.2306015
[29]   ION-TRANSPORT BY CULTURES OF HUMAN TRACHEOBRONCHIAL SUBMUCOSAL GLANDS [J].
YAMAYA, M ;
FINKBEINER, WE ;
WIDDICOMBE, JH .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (06) :L485-L490