Two independent regions of human telomerase reverse transcriptase are important for its oligomerization and telomerase activity

被引:46
作者
Arai, K
Masutomi, K
Khurts, S
Kaneko, S
Kobayashi, K
Murakami, S
机构
[1] Kanazawa Univ, Canc Res Inst, Dept Mol Oncol, Kanazawa, Ishikawa 9200934, Japan
[2] Kanazawa Univ, Dept Internal Med 1, Kanazawa, Ishikawa 9200934, Japan
关键词
D O I
10.1074/jbc.M111068200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, contains motifs conserved among reverse transcriptases. Several nucleic acid-dependent polymerases that share a "fingers, palm, and thumb substructure" were shown to oligomerize. Here we demonstrate that hTERT also has this ability using partially purified recombinant hTERTs and mammalian cells co-expressing differently tagged hTERTs. Human template RNA (hTR), by contrast, has no effect on the structural oligomerization of hTERTs. Therefore, hTERT has an intrinsic ability of oligomerization in the absence of hTR. We identified two separate regions as essential for the oligomerization. The regions, amino acids 301-538 (amino-terminal region) and amino acids 914-928 (carboxyl-terminal region), are outside the fingers and palm substructure covering motif T to D and interact with each other in vivo. A substituted mutant of hTERT, hTERT-D712A-V713I, which was reported as a dominant negative form of hTERT, bound to the wildtype hTERT and inhibited its telomerase activity transiently expressed in telomerase-negative finite normal human fibroblast. The truncated forms of hTERT containing the binding region to the wild-type hTERT partially inhibited the telomerase activity, probably by preventing the wild-type hTERT from forming an oligomer. Taken together, the oligomerization of hTERT is an important step for telomerase activity.
引用
收藏
页码:8538 / 8544
页数:7
相关论文
共 36 条
[1]   N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo [J].
Armbruster, BN ;
Banik, SSR ;
Guo, CH ;
Smith, AC ;
Counter, CM .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (22) :7775-7786
[2]   Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions [J].
Bachand, F ;
Autexier, C .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1888-1897
[3]   Polymerization defects within human telomerase are distinct from telomerase RNA and TEP1 binding [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (10) :3329-3340
[4]   Functional multimerization of the human telomerase reverse transcriptase [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (18) :6151-6160
[5]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[6]   Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus [J].
Bressanelli, S ;
Tomei, L ;
Roussel, A ;
Incitti, I ;
Vitale, RL ;
Mathieu, M ;
De Francesco, R ;
Rey, FA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13034-13039
[7]   Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization [J].
Counter, CM ;
Hahn, WC ;
Wei, WY ;
Caddle, SD ;
Beijersbergen, RL ;
Lansdorp, PM ;
Sedivy, JM ;
Weinberg, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14723-14728
[8]  
DIVITA G, 1994, J BIOL CHEM, V269, P13080
[9]   Inhibition of telomerase limits the growth of human cancer cells [J].
Hahn, WC ;
Stewart, SA ;
Brooks, MW ;
York, SG ;
Eaton, E ;
Kurachi, A ;
Beijersbergen, RL ;
Knoll, JHM ;
Meyerson, M ;
Weinberg, RA .
NATURE MEDICINE, 1999, 5 (10) :1164-1170
[10]   The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer [J].
Harris, D ;
Lee, R ;
Misra, HS ;
Pandey, PK ;
Pandey, VN .
BIOCHEMISTRY, 1998, 37 (17) :5903-5908