Quantum process tomography and Linblad estimation of a solid-state qubit

被引:99
作者
Howard, M
Twamley, J [1 ]
Wittmann, C
Gaebel, T
Jelezko, F
Wrachtrup, J
机构
[1] Macquarie Univ, Ctr Quantum Comp Technol, Sydney, NSW 2109, Australia
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Stuttgart, Inst Phys 3, D-7000 Stuttgart, Germany
关键词
D O I
10.1088/1367-2630/8/3/033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an example of quantum process tomography (QPT) performed on a single solid-state qubit. The qubit used is two energy levels of the triplet state in the nitrogen vacancy defect in diamond. QPT is applied to a qubit which has been allowed to decohere for three different time periods. In each case, the process is found in terms of the. matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted. The results of QPT performed after three different decoherence times are used to find the error generators, or Lindblad operators, for the system, using the technique introduced by Boulant et al (2003 Phys. Rev. A 67 042322).
引用
收藏
页数:21
相关论文
共 45 条
[1]   Ancilla-assisted quantum process tomography [J].
Altepeter, JB ;
Branning, D ;
Jeffrey, E ;
Wei, TC ;
Kwiat, PG ;
Thew, RT ;
O'Brien, JL ;
Nielsen, MA ;
White, AG .
PHYSICAL REVIEW LETTERS, 2003, 90 (19) :4
[2]   Universal simulation of Markovian quantum dynamics [J].
Bacon, Dave ;
Childs, Andrew M. ;
Chuang, Isaac L. ;
Kempe, Julia ;
Leung, Debbie W. ;
Zhou, Xinlan .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06) :1-062302
[3]   Robustness of decoherence-free subspaces for quantum computation [J].
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 1999, 60 (03) :1944-1955
[4]  
BERSOHN M, 1966, INTRO ELECT PARAMAGN, P114
[5]   Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points [J].
Boulant, N ;
Havel, TF ;
Pravia, MA ;
Cory, DG .
PHYSICAL REVIEW A, 2003, 67 (04) :12
[6]   Reconstruction of Liouvillian superoperators [J].
Buzek, V .
PHYSICAL REVIEW A, 1998, 58 (03) :1723-1727
[7]   Quantum tomography via the MaxEnt principle [J].
Buzek, V ;
Drobny, G .
JOURNAL OF MODERN OPTICS, 2000, 47 (14-15) :2823-2839
[8]   Realization of quantum process tomography in NMR [J].
Childs, AM ;
Chuang, IL ;
Leung, DW .
PHYSICAL REVIEW A, 2001, 64 (01) :123141-123147
[9]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[10]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609