Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a High-Performance Cathode for Lithium-Sulfur Batteries

被引:219
作者
Ding, Bing [1 ]
Yuan, Changzhou [2 ]
Shen, Laifa [1 ]
Xu, Guiyin [1 ]
Nie, Ping [1 ]
Zhang, Xiaogang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemistry; energy storage; nanostructures; self-; assembly; sulfur; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; ION; NANOTUBES; POLYMER; ISSUES;
D O I
10.1002/chem.201202127
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A three-dimensional (3D) hierarchical carbonsulfur nanocomposite that is useful as a high-performance cathode for rechargeable lithiumsulfur batteries is reported. The 3D hierarchically ordered porous carbon (HOPC) with mesoporous walls and interconnected macropores was prepared by in situ self-assembly of colloidal polymer and silica spheres with sucrose as the carbon source. The obtained porous carbon possesses a large specific surface area and pore volume with narrow mesopore size distribution, and acts as a host and conducting framework to contain highly dispersed elemental sulfur. Electrochemical tests reveal that the HOPC/S nanocomposite with well-defined nanostructure delivers a high initial specific capacity up to 1193 mAh?g-1 and a stable capacity of 884 mAh?g-1 after 50 cycles at 0.1 C. In addition, the HOPC/S nanocomposite exhibits high reversible capacity at high rates. The excellent electrochemical performance is attributed exclusively to the beneficial integration of the mesopores for the electrochemical reaction and macropores for ion transport. The mesoporous walls of the HOPC act as solvent-restricted reactors for the redox reaction of sulfur and aid in suppressing the diffusion of polysulfide species into the electrolyte. The open ordered interconnected macropores and windows facilitate transportation of electrolyte and solvated lithium ions during the charge/discharge process. These results show that nanostructured carbon with hierarchical pore distribution could be a promising scaffold for encapsulating sulfur to approach high specific capacity and energy density with long cycling performance.
引用
收藏
页码:1013 / 1019
页数:7
相关论文
共 40 条
  • [1] [Anonymous], 2010, ANGEW CHEM-GER EDIT, DOI [DOI 10.1002/ANIE.200907324, DOI 10.1002/ANGE.200907324]
  • [2] A Critical Review of Thermal Issues in Lithium-Ion Batteries
    Bandhauer, Todd M.
    Garimella, Srinivas
    Fuller, Thomas F.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : R1 - R25
  • [3] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [4] Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries
    Cao, Yuliang
    Li, Xiaolin
    Aksay, Ilhan A.
    Lemmon, John
    Nie, Zimin
    Yang, Zhenguo
    Liu, Jun
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (17) : 7660 - 7665
  • [5] A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries
    Chen, Jia-jia
    Zhang, Qian
    Shi, Yi-ning
    Qin, Lin-lin
    Cao, Yong
    Zheng, Ming-sen
    Dong, Quan-feng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) : 5376 - 5382
  • [6] Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery
    Chen, Shu-Ru
    Zhai, Yun-Pu
    Xu, Gui-Liang
    Jiang, Yan-Xia
    Zhao, Dong-Yuan
    Li, Jun-Tao
    Huang, Ling
    Sun, Shi-Gang
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (26) : 9549 - 9555
  • [7] High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles
    Chen, Zheng
    Wen, Jing
    Yan, Chunzhu
    Rice, Lynn
    Sohn, Hiesang
    Shen, Meiqing
    Cai, Mei
    Dunn, Bruce
    Lu, Yunfeng
    [J]. ADVANCED ENERGY MATERIALS, 2011, 1 (04) : 551 - 556
  • [8] Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries
    Elazari, Ran
    Salitra, Gregory
    Garsuch, Arnd
    Panchenko, Alexander
    Aurbach, Doron
    [J]. ADVANCED MATERIALS, 2011, 23 (47) : 5641 - +
  • [9] Positive Electrode Materials for Li-Ion and Li-Batteries
    Ellis, Brian L.
    Lee, Kyu Tae
    Nazar, Linda F.
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 691 - 714
  • [10] Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content
    Evers, Scott
    Nazar, Linda F.
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (09) : 1233 - 1235