Learning Setting-Generalized Activity Models for Smart Spaces

被引:209
作者
Cook, Diane J. [1 ]
机构
[1] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
基金
美国国家科学基金会;
关键词
Hidden Markov models; Intelligent sensors; Intelligent systems; Smart homes; Ubiquitous computing; Machine learning; activity recognition; machine learning; ubiquitous computing; pervasive computing;
D O I
10.1109/MIS.2010.112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smart home activity recognition systems can learn generalized models for common activities that span multiple environment settings and resident types. © 2012 IEEE.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 12 条
[11]   Estimating location using Wi-Fi [J].
Yang, Qiang ;
Pan, Sinno Jialin ;
Zheng, Vincent Wenchen .
IEEE INTELLIGENT SYSTEMS, 2008, 23 (01) :8-13
[12]   A local boosting algorithm for solving classification problems [J].
Zhang, Chun-Xia ;
Zhang, Jiang-She .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :1928-1941