High accuracy calculations of the optical gap and absorption spectrum of oxygen contaminated Si nanocrystals

被引:50
作者
Garoufalis, CS [1 ]
Zdetsis, AD [1 ]
机构
[1] Univ Patras, Dept Phys, Patras 26500, Greece
关键词
D O I
10.1039/b513184g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report accurate high level calculations of the optical gap and absorption spectrum of small Si nanocrystals, with hydrogen and oxygen at the surface. Our calculations have been performed in the framework of time dependent density functional theory (TDDFT) using the hybrid nonlocal exchange and correlation functional of Becke and Lee, Yang and Parr (B3LYP). The accuracy of these calculations has been verified by the high level multi-reference second order perturbation theory. The effect of oxygen contamination is studied by considering several different bonding configurations of the surface oxygen atoms. We show that for nanocrystals of sizes smaller than 20 angstrom, the widening of the gap due to quantum confinement facilitates the stabilization of Si=O double bonds. For this type of bonding, the oxygen related states determine the value of the optical gap and make it significantly lower compared to the corresponding gap of oxygen-free nanocrystals. For diameters larger than 20 angstrom, the double bonds delocalize inside the valence band. We find that for small amounts of oxygen, the size of the optical gap depends strongly on their relative distribution and bonding type, while it is practically insensitive to the exact number of oxygen atoms.
引用
收藏
页码:808 / 813
页数:6
相关论文
共 48 条
[1]   Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy [J].
Akcakir, O ;
Therrien, J ;
Belomoin, G ;
Barry, N ;
Muller, JD ;
Gratton, E ;
Nayfeh, M .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1857-1859
[2]  
[Anonymous], 1995, RECENT ADV DENSITY 1
[3]   Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J].
Bauernschmitt, R ;
Ahlrichs, R .
CHEMICAL PHYSICS LETTERS, 1996, 256 (4-5) :454-464
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Nayfeh, M .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :779-781
[6]   Observation of a magic discrete family of ultrabright Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Smith, A ;
Rao, S ;
Twesten, R ;
Chaieb, S ;
Nayfeh, MH ;
Wagner, L ;
Mitas, L .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :841-843
[7]   ELECTRONIC SPECTROSCOPY AND PHOTOPHYSICS OF SI NANOCRYSTALS - RELATIONSHIP TO BULK C-SI AND POROUS SI [J].
BRUS, LE ;
SZAJOWSKI, PF ;
WILSON, WL ;
HARRIS, TD ;
SCHUPPLER, S ;
CITRIN, PH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (10) :2915-2922
[8]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[9]   Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state -: art. no. 155411 [J].
Degoli, E ;
Cantele, G ;
Luppi, E ;
Magri, R ;
Ninno, D ;
Bisi, O ;
Ossicini, S .
PHYSICAL REVIEW B, 2004, 69 (15) :155411-1
[10]   Excited-state relaxations and Franck-Condon shift in Si quantum dots [J].
Franceschetti, A ;
Pantelides, ST .
PHYSICAL REVIEW B, 2003, 68 (03) :333131-333134