Cell-cell communication beyond connexins: The pannexin channels

被引:201
作者
Barbe, MT [1 ]
Monyer, H
Bruzzone, R
机构
[1] Heidelberg Univ, Dept Clin Neurobiol, Bergheimer Str 58, Heidelberg, Germany
[2] Heidelberg Univ, Interdisciplinary Ctr Neurosci, Heidelberg, Germany
[3] Inst Pasteur, Dept Neurosci, Paris, France
关键词
D O I
10.1152/physiol.00048.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Direct cell-to-cell communication through specialized intercellular channels is a characteristic feature of virtually all multi-cellular organisms. The remarkable functional conservation of cell-to-cell coupling throughout the animal kingdom, however, is not matched at the molecular level of the structural protein components, Thus protostomes (including nematodes and flies) and deuterostomes (including all vertebrates) utilize two unrelated families of gap-junction genes, innexins and connexins, respectively. The recent discovery that pannexins, a novel group of proteins expressed by several organisms, are able to form intercellular channels has started a quest to understand their evolutionary relationship and functional contribution to cell communication in vivo. There are three pannexin genes in mammals, two of which are co-expressed in the developing and adult brain. Of note, pannexin1 can also form Ca2+, activated hemichannels that open at physiological extracellular Ca2+ concentrations and exhibit distinct pharmacological properties.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 113 条
[11]  
Bourrat F, 1983, Brain Res, V284, P291
[12]   Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells [J].
Braet, K ;
Aspeslagh, S ;
Vandamme, W ;
Willecke, K ;
Martin, PEM ;
Evans, WH ;
Leybaert, L .
JOURNAL OF CELLULAR PHYSIOLOGY, 2003, 197 (02) :205-213
[13]   Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes [J].
Bruzzone, R ;
Barbe, MT ;
Jakob, NJ ;
Monyer, H .
JOURNAL OF NEUROCHEMISTRY, 2005, 92 (05) :1033-1043
[14]   Pannexins, a family of gap junction proteins expressed in brain [J].
Bruzzone, R ;
Hormuzdi, SG ;
Barbe, MT ;
Herb, A ;
Monyer, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13644-13649
[15]   Connections with connexins: The molecular basis of direct intercellular signaling [J].
Bruzzone, R ;
White, TW ;
Paul, DL .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 238 (01) :1-27
[16]  
Buhl DL, 2003, J NEUROSCI, V23, P1013
[17]   Gap junction channel gating [J].
Bukauskas, FF ;
Verselis, VK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1662 (1-2) :42-60
[18]  
BUNSE S, IN PRESS CELL COMMUN
[19]   TEMPORAL STRUCTURE IN SPATIALLY ORGANIZED NEURONAL ENSEMBLES - A ROLE FOR INTERNEURONAL NETWORKS [J].
BUZSAKI, G ;
CHROBAK, JJ .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (04) :504-510
[20]   Hippocampal network patterns of activity in the mouse [J].
Buzsáki, G ;
Buhl, DL ;
Harris, KD ;
Csicsvari, J ;
Czéh, B ;
Morozov, A .
NEUROSCIENCE, 2003, 116 (01) :201-211