On the identification of the most suitable traits for plant functional trait analyses

被引:96
作者
Bernhardt-Roemermann, Markus [1 ]
Roemermann, Christine [2 ]
Nuske, Robert [3 ]
Parth, Andreas [1 ]
Klotz, Stefan [4 ]
Schmidt, Wolfgang [1 ]
Stadler, Jutta [4 ]
机构
[1] Univ Gottingen, Fac Forest Sci & Forest Ecol, Dept Silviculture & Forest Ecol Temperate Zone, DE-37077 Gottingen, Germany
[2] Goethe Univ Frankfurt, Inst Phys Geog, DE-60438 Frankfurt, Germany
[3] Univ Gottingen, Dept Ecoinformat Biometr & Forest Growth, DE-37077 Gottingen, Germany
[4] UFZ Helmholtz Ctr Environm Res, Environm Res Ctr, Dept Community Ecol Helmholtz, DE-06120 Halle, Germany
关键词
D O I
10.1111/j.2008.0030-1299.16776.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Within the past few years plant functional trait analyses have been widely applied to learn more about the processes and patterns of ecosystem development in response to environmental changes. These approaches are based on the assumption that plants with similar ecologically relevant trait attributes respond to environmental changes in comparable ways. Several methods have been described on how to analyse a priori defined trait sets with respect to environment. Irrespective of the statistical methods used to contrast ecosystem responses and environmental conditions, each functional trait approach depends strongly on the initial trait set. In nearly all recent studies on functional trait analysis a test, if a trait is responsible, is applied independently from the core analysis. In the current study we present a method that extracts those traits from a wider set of traits which are optimal for describing the ecosystem response to a given environmental gradient. This was done by the use of iterative three-table ordination techniques with each possible trait combination. We further concentrated on the effect of the inclusion of too many traits in such analyses. As examples the method was applied to three long term studies on abandoned arable fields. The approach was validated by comparing the results with literature-knowledge on arable field succession. Although the trait pre-selection was only based on a statistical procedure, our method was able to identify all relevant processes of ecosystem responses. All three sites show comparable ecosystem responses; the importance of the competitive ability of plants was highlighted. We further demonstrated that the use of too many traits results in an over-fitting of the trait-environment model. The presented method of iterative RLQ-analyses is adequate to identify responding traits to environmental changes: the discovered processes of successional development of abandoned arable fields are consistent with our knowledge from the literature.
引用
收藏
页码:1533 / 1541
页数:9
相关论文
共 60 条
[31]   Plant functional classifications: from general groups to specific groups based on response to disturbance [J].
Lavorel, S ;
McIntyre, S ;
Landsberg, J ;
Forbes, TDA .
TRENDS IN ECOLOGY & EVOLUTION, 1997, 12 (12) :474-478
[32]   CLASSIFYING PLANTS INTO GROUPS ON THE BASIS OF ASSOCIATIONS OF INDIVIDUAL TRAITS EVIDENCE FROM AUSTRALIAN SEMIARID WOODLANDS [J].
LEISHMAN, MR ;
WESTOBY, M .
JOURNAL OF ECOLOGY, 1992, 80 (03) :417-424
[33]   PLANT LIFE-HISTORY ATTRIBUTES - THEIR RELATIONSHIP TO DISTURBANCE RESPONSES IN HERBACEOUS VEGETATION [J].
MCINTYRE, S ;
LAVOREL, S ;
TREMONT, RM .
JOURNAL OF ECOLOGY, 1995, 83 (01) :31-44
[34]   Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem [J].
Naeem, S ;
Wright, JP .
ECOLOGY LETTERS, 2003, 6 (06) :567-579
[35]   THE USE OF VITAL ATTRIBUTES TO PREDICT SUCCESSIONAL CHANGES IN PLANT-COMMUNITIES SUBJECT TO RECURRENT DISTURBANCES [J].
NOBLE, IR ;
SLATYER, RO .
VEGETATIO, 1980, 43 (1-2) :5-21
[36]  
Oksanen J., 2007, Community Ecol. Package, V10, P719
[37]   Predictability of plant species composition from environmental conditions is constrained by dispersal limitation [J].
Ozinga, WA ;
Schaminée, JHJ ;
Bekker, RM ;
Bonn, S ;
Poschlod, P ;
Tackenberg, O ;
Bakker, J ;
van Groenendael, JM .
OIKOS, 2005, 108 (03) :555-561
[38]   RESPONSES OF PLANTS FROM 3 SUCCESSIONAL COMMUNITIES TO A NUTRIENT GRADIENT [J].
PARRISH, JAD ;
BAZZAZ, FA .
JOURNAL OF ECOLOGY, 1982, 70 (01) :233-248
[39]   COMPETITIVE INTERACTIONS IN PLANT-COMMUNITIES OF DIFFERENT SUCCESSIONAL AGES [J].
PARRISH, JAD ;
BAZZAZ, FA .
ECOLOGY, 1982, 63 (02) :314-320
[40]   On the statistical significance of functional diversity effects [J].
Petchey, OL .
FUNCTIONAL ECOLOGY, 2004, 18 (03) :297-303