Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface

被引:112
作者
Herzog, Fabian [1 ]
Clift, Martin J. D. [1 ]
Piccapietra, Flavio [2 ]
Behra, Renata [2 ]
Schmid, Otmar [3 ]
Petri-Fink, Alke [1 ,4 ]
Rothen-Rutishauser, Barbara [1 ,5 ]
机构
[1] Univ Fribourg, Adolphe Merkle Inst, Marly, Switzerland
[2] Eawag, Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland
[3] Helmholtz Zentrum Munchen, Comprehens Pneumol Ctr, Inst Lung Biol & Dis, Neuherberg, Germany
[4] Univ Fribourg, Dept Chem, CH-1700 Fribourg, Switzerland
[5] Univ Bern, Inselspital Univ Hosp, Dept Clin Res, Bern, Switzerland
来源
PARTICLE AND FIBRE TOXICOLOGY | 2013年 / 10卷
基金
瑞士国家科学基金会;
关键词
NANO-SILVER; RESPIRATORY-TRACT; OXIDATIVE STRESS; TOXICITY; MODEL; CYTOTOXICITY; INFLAMMATION; INDUCE; GENOTOXICITY; EXPRESSION;
D O I
10.1186/1743-8977-10-11
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Background: Due to its antibacterial properties, silver (Ag) has been used in more consumer products than any other nanomaterial so far. Despite the promising advantages posed by using Ag-nanoparticles (NPs), their interaction with mammalian systems is currently not fully understood. An exposure route via inhalation is of primary concern for humans in an occupational setting. Aim of this study was therefore to investigate the potential adverse effects of aerosolised Ag-NPs using a human epithelial airway barrier model composed of A549, monocyte derived macrophage and dendritic cells cultured in vitro at the air-liquid interface. Cell cultures were exposed to 20 nm citrate-coated Ag-NPs with a deposition of 30 and 278 ng/cm(2) respectively and incubated for 4 h and 24 h. To elucidate whether any effects of Ag-NPs are due to ionic effects, Ag-Nitrate (AgNO3) solutions were aerosolised at the same molecular mass concentrations. Results: Agglomerates of Ag-NPs were detected at 24 h post exposure in vesicular structures inside cells but the cellular integrity was not impaired upon Ag-NP exposures. Minimal cytotoxicity, by measuring the release of lactate dehydrogenase, could only be detected following a higher concentrated AgNO3-solution. A release of pro-inflammatory markers TNF-alpha and IL-8 was neither observed upon Ag-NP and AgNO3 exposures as well as was not affected when cells were pre-stimulated with lipopolysaccharide (LPS). Also, an induction of mRNA expression of TNF-alpha and IL-8, could only be observed for the highest AgNO3 concentration alone or even significantly increased when pre-stimulated with LPS after 4 h. However, this effect disappeared after 24 h. Furthermore, oxidative stress markers (HMOX-1, SOD-1) were expressed after 4 h in a concentration dependent manner following AgNO3 exposures only. Conclusions: With an experimental setup reflecting physiological exposure conditions in the human lung more realistic, the present study indicates that Ag-NPs do not cause adverse effects and cells were only sensitive to high Ag-ion concentrations. Chronic exposure scenarios however, are needed to reveal further insight into the fate of Ag-NPs after deposition and cell interactions.
引用
收藏
页数:14
相关论文
共 60 条
[1]   Silver nanoparticle applications and human health [J].
Ahamed, Maqusood ;
AlSalhi, Mohamad S. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2010, 411 (23-24) :1841-1848
[2]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[3]   Anti-proliferative activity of silver nanoparticles [J].
AshaRani, P. V. ;
Hande, M. Prakash ;
Valiyaveettil, Suresh .
BMC CELL BIOLOGY, 2009, 10 :65
[4]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[5]   Toxicity of silver nanoparticles-Nanoparticle or silver ion? [J].
Beer, Christiane ;
Foldbjerg, Rasmus ;
Hayashi, Yuya ;
Sutherland, Duncan S. ;
Autrup, Herman .
TOXICOLOGY LETTERS, 2012, 208 (03) :286-292
[6]   Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens [J].
Blank, Fabian ;
Rothen-Rutishauser, Barbara ;
Gehr, Peter .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2007, 36 (06) :669-677
[7]   An optimized in vitro model of the respiratory tract wall to study particle cell interactions [J].
Blank, Fabian ;
Rothen-Rutishauser, Barbara M. ;
Schurch, Samuel ;
Gehr, Peter .
JOURNAL OF AEROSOL MEDICINE-DEPOSITION CLEARANCE AND EFFECTS IN THE LUNG, 2006, 19 (03) :392-405
[8]   Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model [J].
Brandenberger, C. ;
Rothen-Rutishauser, B. ;
Muehlfeld, C. ;
Schmid, O. ;
Ferron, G. A. ;
Maier, K. L. ;
Gehr, P. ;
Lenz, A. -G. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (01) :56-65
[9]   Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycol-Coated Gold Nanoparticles [J].
Brandenberger, Christina ;
Muehlfeld, Christian ;
Ali, Zulqurnain ;
Lenz, Anke-Gabriele ;
Schmid, Otmar ;
Parak, Wolfgang J. ;
Gehr, Peter ;
Rothen-Rutishauser, Barbara .
SMALL, 2010, 6 (15) :1669-1678
[10]   Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see? [J].
Brandenberger, Christina ;
Clift, Martin J. D. ;
Vanhecke, Dimitri ;
Muehlfeld, Christian ;
Stone, Vicki ;
Gehr, Peter ;
Rothen-Rutishauser, Barbara .
PARTICLE AND FIBRE TOXICOLOGY, 2010, 7