Silver nanoparticle applications and human health

被引:977
作者
Ahamed, Maqusood [1 ]
AlSalhi, Mohamad S. [1 ]
Siddiqui, M. K. J. [2 ]
机构
[1] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
[2] Council Sci & Technol Uttar Pradesh, Lucknow 227017, Uttar Pradesh, India
关键词
Silver nanoparticle; Human health; Toxicity; Oxidative stress; DNA damage; Apoptosis; IN-VITRO TOXICITY; OXIDATIVE STRESS; EXPOSURE; CYTOTOXICITY; TRANSLOCATION; NANOSILVER; DROSOPHILA; ZEBRAFISH; CELLS; BIOCOMPATIBILITY;
D O I
10.1016/j.cca.2010.08.016
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Nanotechnology is rapidly growing with nanoparticles produced and utilized in a wide range of commercial products throughout the world. For example, silver nanoparticles (Ag NP) are used in electronics, biosensing, clothing, food industry, paints, sunscreens, cosmetics and medical devices. These broad applications, however, increase human exposure and thus the potential risk related to their short- and long-term toxicity. A large number of in vitro studies indicate that Ag NPs are toxic to the mammalian cells derived from skin, liver, lung, brain, vascular system and reproductive organs. Interestingly, some studies have shown that this particle has the potential to induce genes associated with cell cycle progression. DNA damage and apoptosis in human cells at non-cytotoxic doses. Furthermore, in vivo bio-distribution and toxicity studies in rats and mice have demonstrated that Ag NP administered by inhalation, ingestion or intra-peritoneal injection were subsequently detected in blood and caused toxicity in several organs including brain. Moreover, Ag NP exerted developmental and structural malformations in non-mammalian model organisms typically used to elucidate human disease and developmental abnormalities. The mechanisms for Ag NP induced toxicity include the effects of this particle on cell membranes, mitochondria and genetic material. This paper summarizes and critically assesses the current studies focusing on adverse effects of Ag NPs on human health. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1841 / 1848
页数:8
相关论文
共 81 条
[1]   Low level lead exposure and oxidative stress: Current opinions [J].
Ahamed, M. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2007, 383 (1-2) :57-64
[2]   Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells [J].
Ahamed, Maqusood ;
Siddiqui, Maqsood A. ;
Akhtar, Mohd J. ;
Ahmad, Iqbal ;
Pant, Aditya B. ;
Alhadlaq, Hisham A. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 396 (02) :578-583
[3]   Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J].
Ahamed, Maqusood ;
Posgai, Ryan ;
Gorey, Timothy J. ;
Nielsen, Mark ;
Hussain, Saber M. ;
Rowe, John J. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (03) :263-269
[4]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[5]  
Aliev G, 2009, ALZHEIMERS DEMENT, V5, P324
[6]  
[Anonymous], 2008, NANOMATERIALS STATE
[7]   Cellular responses induced by silver nanoparticles:: In vitro studies [J].
Arora, S. ;
Jain, J. ;
Rajwade, J. M. ;
Paknikar, K. M. .
TOXICOLOGY LETTERS, 2008, 179 (02) :93-100
[8]   Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells [J].
Arora, S. ;
Jain, J. ;
Rajwade, J. M. ;
Paknikar, K. M. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2009, 236 (03) :310-318
[9]   Toxicity of silver nanoparticles in zebrafish models [J].
Asharani, P. V. ;
Wu, Yi Lian ;
Gong, Zhiyuan ;
Valiyaveettil, Suresh .
NANOTECHNOLOGY, 2008, 19 (25)
[10]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290