Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells

被引:283
作者
Ahamed, Maqusood [1 ]
Siddiqui, Maqsood A. [2 ]
Akhtar, Mohd J. [3 ]
Ahmad, Iqbal [3 ]
Pant, Aditya B. [4 ]
Alhadlaq, Hisham A. [1 ,5 ]
机构
[1] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Dept Zool, DNA Res Chair, Riyadh 11451, Saudi Arabia
[3] Indian Inst Toxicol Res, Fibre Toxicol Div, Lucknow 226001, Uttar Pradesh, India
[4] Indian Inst Toxicol Res, In Vitro Toxicol Lab, Lucknow 226001, Uttar Pradesh, India
[5] King Saud Univ, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
关键词
Copper oxide nanoparticles; A549; cells; Genotoxicity; Oxidative stress; DNA-DAMAGE RESPONSE; SILVER NANOPARTICLES; OXIDATIVE STRESS; EXPOSURE; ASSAY; APOPTOSIS; PROTEIN; PATHWAY;
D O I
10.1016/j.bbrc.2010.04.156
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Copper oxide nanoparticles (CuO NPs) are increasingly used in various applications. Recent studies suggest that oxidative stress may be the cause of the cytotoxicity of CuO NPs in mammalian cells. However, little is known about the genotoxicity of CuO NPs following exposure to human cells. This study was undertaken to investigate CuO NPs induced genotoxic response through p53 pathway in human pulmonary epithelial cells (A549). In addition, cytotoxicity and oxidative stress markers were also assessed. Results showed that cell viability was reduced by CuO NPs and degree of reduction was dose dependent. CuO NPs were also found to induce oxidative stress in dose-dependent manner indicated by depletion of glutathione and induction of lipid peroxidation, catalase and superoxide dismutase. The expression of Hsp70, the first tier biomarker of cellular damage was induced by CuO NPs. Further, CuO NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and MSH2 expression. These results demonstrate that CuO NPs possess a genotoxic potential in A549 cells which may be mediated through oxidative stress. Our short-term exposure study of high level induction of genotoxic response of CuO NPs will need to be further investigated to determine whether long-term exposure consequences may exist for CuO NPs application. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:578 / 583
页数:6
相关论文
共 26 条
[1]   Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J].
Ahamed, Maqusood ;
Posgai, Ryan ;
Gorey, Timothy J. ;
Nielsen, Mark ;
Hussain, Saber M. ;
Rowe, John J. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (03) :263-269
[2]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[3]   Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells [J].
Berntsen, P. ;
Park, C. Y. ;
Rothen-Rutishauser, B. ;
Tsuda, A. ;
Sager, T. M. ;
Molina, R. M. ;
Donaghey, T. C. ;
Alencar, A. M. ;
Kasahara, D. I. ;
Ericsson, T. ;
Millet, E. J. ;
Swenson, J. ;
Tschumperlin, D. J. ;
Butler, J. P. ;
Brain, J. D. ;
Fredberg, J. J. ;
Gehr, P. ;
Zhou, E. H. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 :S331-S340
[4]  
Borenfreund E., 1985, J Tissue Cult Methods, V9, P7, DOI DOI 10.1007/BF01666038
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]  
Chang H, 2005, REV ADV MATER SCI, V10, P128
[7]   Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells [J].
Choi, Soo-Jin ;
Oh, Jae-Min ;
Choy, Jin-Ho .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2009, 103 (03) :463-471
[8]   TISSUE SULFHYDRYL GROUPS [J].
ELLMAN, GL .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1959, 82 (01) :70-77
[9]   Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B [J].
Eom, Hyun-Jeong ;
Choi, Jinhee .
TOXICOLOGY LETTERS, 2009, 187 (02) :77-83
[10]   Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells [J].
Fahmy, Baher ;
Cormier, Stephania A. .
TOXICOLOGY IN VITRO, 2009, 23 (07) :1365-1371