Nonlinear feedback-controlled generalized synchronization of spatial chaos

被引:46
作者
Liu, ST [1 ]
Chen, GR
机构
[1] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2003.12.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the following two spatially generalized Logistic systems: x(m+1,n) + omegax(m,n+1) = 1- mu(1)[(1+omega)x(mn)](2) and y(m+1,n) + omegay(m,n+1) = 1 - mu(2)[(1 + omega)y(mn)](2), where omega is a real constant, and mu(1), and mu(2) are two real parameters. An analytical method is introduced for generalized synchronization of these two spatially chaotic systems, and a range of the coupling constant is specified for the generalized synchronization. Moreover, a nonlinear function is characterized for synchronization stability of the two coupled systems. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 14 条
[11]  
Nikolai F.R., 1995, PHYS REV E, V51, P980
[12]   Subharmonic entrainment of unstable period orbits and generalized synchronization [J].
Parlitz, U ;
Junge, L ;
Kocarev, L .
PHYSICAL REVIEW LETTERS, 1997, 79 (17) :3158-3161
[13]   Encoding messages using chaotic synchronization [J].
Parlitz, U ;
Kocarev, L ;
Stojanovski, T ;
Preckel, H .
PHYSICAL REVIEW E, 1996, 53 (05) :4351-4361
[14]  
PECORA LM, 1990, PHYS REV LETT, V64, P8