Atomic-level description of ubiquitin folding

被引:254
作者
Piana, Stefano [1 ]
Lindorff-Larsen, Kresten [1 ]
Shaw, David E. [1 ,2 ]
机构
[1] DE Shaw Res, New York, NY 10036 USA
[2] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA
关键词
CHARMM22*; energy landscape; enthalpy; phi-value analysis; prefactor; MOLECULAR-DYNAMICS SIMULATIONS; DEPENDENT PROTEOLYTIC SYSTEM; TRANSITION-STATE; HYDROGEN-EXCHANGE; 3-HELIX BUNDLE; PROTEIN; RESOLUTION; ENSEMBLE; 2-STATE; POLYPEPTIDE;
D O I
10.1073/pnas.1218321110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Equilibrium molecular dynamics simulations, in Which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging' from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins.
引用
收藏
页码:5915 / 5920
页数:6
相关论文
共 95 条
[1]  
Alonso DOV, 1998, PROTEIN SCI, V7, P860
[2]   MOLECULAR-DYNAMICS SIMULATIONS OF PROTEIN UNFOLDING AND LIMITED REFOLDING - CHARACTERIZATION OF PARTIALLY UNFOLDED STATES OF UBIQUITIN IN 60-PERCENT METHANOL AND IN WATER [J].
ALONSO, DOV ;
DAGGETT, V .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :501-520
[3]   Fast and faster:: A designed variant of the B-domain of protein A folds in 3 μsec [J].
Arora, P ;
Oas, TG ;
Myers, JK .
PROTEIN SCIENCE, 2004, 13 (04) :847-853
[4]   Direct access to the cooperative substructure of proteins and the protein ensemble via cold denaturation [J].
Babu, CR ;
Hilser, VJ ;
Wand, AJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (04) :352-357
[5]   Malleability of folding intermediates in the homeodomain superfamily [J].
Banachewicz, Wiktor ;
Religa, Tomasz L. ;
Schaeffer, R. D. ;
Daggett, Valerie ;
Fersht, Alan R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (14) :5596-5601
[6]   Reaction coordinates and rates from transition paths [J].
Best, RB ;
Hummer, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) :6732-6737
[7]   EARLY HYDROGEN-BONDING EVENTS IN THE FOLDING REACTION OF UBIQUITIN [J].
BRIGGS, MS ;
RODER, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (06) :2017-2021
[8]   Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by H-1, C-13, and N-15 nuclear magnetic resonance spectroscopy [J].
Brutscher, B ;
Bruschweiler, R ;
Ernst, RR .
BIOCHEMISTRY, 1997, 36 (42) :13043-13053
[9]   P versus Q:: Structural reaction coordinates capture protein folding on smooth landscapes [J].
Cho, SS ;
Levy, Y ;
Wolynes, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (03) :586-591
[10]   Temperature-dependent downhill unfolding of ubiquitin. I. Nanosecond-to-millisecond resolved nonlinear infrared spectroscopy [J].
Chung, Hoi Sung ;
Tokmakoff, Andrei .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 72 (01) :474-487