Monodisperse and Inorganically Capped Sn and Sn/SnO2 Nanocrystals for High-Performance Li-Ion Battery Anodes

被引:359
作者
Kravchyk, Kostiantyn [1 ,2 ]
Protesescu, Loredana [1 ,2 ]
Bodnarchuk, Maryna I. [1 ,2 ]
Krumeich, Frank [1 ]
Yarema, Maksym [1 ,2 ]
Walter, Marc [1 ]
Guntlin, Christoph [1 ]
Kovalenko, Maksym V. [1 ,2 ]
机构
[1] ETH, Dept Chem & Appl Biosci, Inst Inorgan Chem, CH-8093 Zurich, Switzerland
[2] EMPA Swiss Fed Labs Mat Sci & Technol, CH-8060 Dubendorf, Switzerland
基金
瑞士国家科学基金会;
关键词
COLLOIDAL NANOCRYSTALS; COBALT NANOPARTICLES; SILICON NANOWIRES; INFRARED-SPECTRA; HIGH-CAPACITY; QUANTUM DOTS; TIN; LITHIUM; SUPERLATTICES; ELECTRODES;
D O I
10.1021/ja312604r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a facile synthesis of highly monodisperse colloidal Sn and Sn/SnO2 nanocrystals with mean sizes tunable over the range 9-23 nm and size distributions below 10%. For testing the utility of Sn/SnO2 nanocrystals as an active anode material in Li-ion batteries, a simple ligand-exchange procedure using inorganic capping ligands was applied to facilitate electronic connectivity within the components of the nanocrystalline electrode. Electrochemical measurements demonstrated that 10 nm Sn/SnO2 nanocrystals enable high Li insertion/removal cycling stability, in striking contrast to commercial 100-150 nm powders of Sn and SnO2. In particular, reversible Li-storage capacities above 700 mA h g(-1) were obtained after 100 cycles of deep charging (0.005-2 V) at a relatively high current of 1000 mA h g(-1).
引用
收藏
页码:4199 / 4202
页数:4
相关论文
共 37 条
[1]  
ADLER HH, 1965, AM MINERAL, V50, P132
[2]   Optimization of Carrier Multiplication for More Effcient Solar Cells: The Case of Sn Quantum Dots [J].
Allan, Guy ;
Delerue, Christophe .
ACS NANO, 2011, 5 (09) :7318-7323
[3]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[4]  
Bose S, 2010, NAT MATER, V9, P550, DOI [10.1038/NMAT2768, 10.1038/nmat2768]
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
CHEMISTRY OF MATERIALS, 2012, 24 (19) :3738-3745
[7]   Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries [J].
Chockla, Aaron M. ;
Bogart, Timothy D. ;
Hessel, Colin M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34) :18079-18086
[8]   A library of single-crystal metal-tin nanorods: Using diffusion as a tool for controlling the morphology of intermetallic nanocrystals [J].
Chou, Nam Hawn ;
Schaak, Raymond E. .
CHEMISTRY OF MATERIALS, 2008, 20 (06) :2081-2085
[9]   Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M = Fe, Co, Ni, Pd) nanocrystals [J].
Chou, Nam Hawn ;
Schaak, Raymond E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7339-7345
[10]   One-pot synthesis of core - Shell FeRh nanoparticles [J].
Ciuculescu, Diana ;
Amiens, Catherine ;
Respaud, Marc ;
Falqui, Andrea ;
Lecante, Pierre ;
Benfield, Robert E. ;
Jiang, Linqin ;
Fauth, Kai ;
Chaudret, Bruno .
CHEMISTRY OF MATERIALS, 2007, 19 (19) :4624-4626