Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM

被引:132
作者
Carstensen, C
Bartels, S
机构
[1] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
[2] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
关键词
a posteriori error estimates; residual based error estimate; adaptive algorithm; reliability; finite element method; mixed finite element method; nonconforming finite element method;
D O I
10.1090/S0025-5718-02-01402-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Averaging techniques are popular tools in adaptive finite element methods for the numerical treatment of second order partial differential equations since they provide efficient a posteriori error estimates by a simple post-processing. In this paper, their reliablility is shown for conforming, nonconforming, and mixed low order finite element methods in a model situation: the Laplace equation with mixed boundary conditions. Emphasis is on possibly unstructured grids, nonsmoothness of exact solutions, and a wide class of averaging techniques. Theoretical and numerical evidence supports that the reliability is up to the smoothness of given right-hand sides.
引用
收藏
页码:945 / 969
页数:25
相关论文
共 31 条
[1]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[2]   Error estimators for a mixed method [J].
Alonso, A .
NUMERISCHE MATHEMATIK, 1996, 74 (04) :385-395
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   VALIDATION OF A-POSTERIORI ERROR ESTIMATORS BY NUMERICAL APPROACH [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK ;
COPPS, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (07) :1073-1123
[5]  
BARTELS S, 2002, IN PRESS MATH COMP
[6]  
Becker R., 1996, E W J NUMER MATH, V4, P237
[7]   Posteriori error estimators for the Raviart-Thomas element [J].
Braess, D ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2431-2444
[8]  
Braess D., 1997, FINITE ELEMENTS
[9]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[10]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15