Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation

被引:802
作者
Wu, Zhong-Shuai [1 ]
Ren, Wencai [1 ]
Gao, Libo [1 ]
Zhao, Jinping [1 ]
Chen, Zongping [1 ]
Liu, Bilu [1 ]
Tang, Daiming [1 ]
Yu, Bing [1 ]
Jiang, Chuanbin [1 ]
Cheng, Hui-Ming [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
基金
美国国家科学基金会;
关键词
graphene; synthesis; arc discharge; exfoliation; electrical conductivity; thermal stability; WALLED CARBON NANOTUBES; FUNCTIONALIZED GRAPHENE; RAMAN-SPECTRA; GRAPHITE; OXIDE; TRANSPARENT; FILMS; ELECTRODES; DISORDER; PHASE;
D O I
10.1021/nn900020u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We developed a hydrogen arc discharge exfoliation method for the synthesis of graphene sheets (GSs) with excellent electrical conductivity and good thermal stability from graphite oxide (GO), in combination with solution-phase dispersion and centrifugation techniques. It was found that efficient exfoliation and considerable deoxygenation of GO, and defect elimination and healing of exfoliated graphite can be simultaneously achieved during the hydrogen arc discharge exfoliation process. The GSs obtained by hydrogen arc discharge exfoliation exhibit a high electrical conductivity of similar to 2 x 10(3) S/cm and high thermal stability with oxidization resistance temperature of 601 degrees C, which are much better than those prepared by argon arc discharge exfoliation (similar to 2 x 10(2) S/cm, 525 degrees C) and by conventional thermal exfoliation (similar to 80 S/cm, 507 degrees C) with the same starting GO. These results demonstrate that this hydrogen arc discharge exfoliation method is a good approach for the preparation of GSs with a good quality.
引用
收藏
页码:411 / 417
页数:7
相关论文
共 48 条
[1]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Pseudoclimb and dislocation dynamics in superplastic nanotubes [J].
Ding, Feng ;
Jiao, Kun ;
Wu, Mingqi ;
Yakobson, Boris I. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[4]   How evaporating carbon nanotubes retain their perfection? [J].
Ding, Feng ;
Jiao, Kun ;
Lin, Yu ;
Yakobson, Boris I. .
NANO LETTERS, 2007, 7 (03) :681-684
[5]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[6]   Microwave exfoliation of a graphite intercalation compound [J].
Falcao, Eduardo H. L. ;
Blair, Richard G. ;
Mack, Julia J. ;
Viculis, Lisa M. ;
Kwon, Chai-Won ;
Bendikov, Michael ;
Kaner, Richard B. ;
Dunn, Bruce S. ;
Wudl, Fired .
CARBON, 2007, 45 (06) :1367-1369
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191