Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model

被引:42
作者
Freericks, JK [1 ]
Gruber, C
Macris, N
机构
[1] Georgetown Univ, Dept Phys, Washington, DC 20057 USA
[2] Ecole Polytech Fed Lausanne, Inst Phys Theor, PHB Ecublens, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1103/PhysRevB.60.1617
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The simplest statistical-mechanical model of crystalline formation (or alloy formation) that includes electronic degrees of freedom is solved exactly in the limit of large spatial dimensions and infinite interaction strength. The solutions contain both second-order phase transitions and first-order phase transitions (that involve phase separation or segregation) which are likely to illustrate the precursor physics behind the static charge-stripe ordering in cuprate systems. In addition, we find that the spinodal-decomposition temperature satisfies an approximate scaling law.
引用
收藏
页码:1617 / 1626
页数:10
相关论文
共 27 条
[1]   Low temperature phase diagrams for quantum perturbations of classical spin systems [J].
Borgs, C ;
Kotecky, R ;
Ueltschi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (02) :409-446
[2]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[3]   THERMODYNAMICS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS .2. CRITICAL-TEMPERATURE AND ORDER PARAMETER [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (02) :295-299
[4]   FREE-ENERGY OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01) :37-41
[5]   EXACT RESULTS FOR THE DISTRIBUTION OF THE F-LEVEL GROUND-STATE OCCUPATION IN THE SPINLESS FALICOV-KIMBALL MODEL [J].
BRANDT, U ;
SCHMIDT, R .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (01) :45-53
[6]   Low-temperature phase diagrams of quantum lattice systems .1. Stability for quantum perturbations of classical systems with finitely-many ground states [J].
Datta, N ;
Fernandez, R ;
Frohlich, J .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) :455-534
[7]   SIMPLE MODEL FOR SEMICONDUCTOR-METAL TRANSITIONS - SMB6 AND TRANSITION-METAL OXIDES [J].
FALICOV, LM ;
KIMBALL, JC .
PHYSICAL REVIEW LETTERS, 1969, 22 (19) :997-&
[8]   2-STATE ONE-DIMENSIONAL SPINLESS FERMI GAS [J].
FREERICKS, JK ;
FALICOV, LM .
PHYSICAL REVIEW B, 1990, 41 (04) :2163-2172
[9]   SPINLESS FALICOV-KIMBALL MODEL (ANNEALED BINARY ALLOY) FROM LARGE TO SMALL DIMENSIONS [J].
FREERICKS, JK .
PHYSICAL REVIEW B, 1993, 47 (15) :9263-9272
[10]   Phase separation in the binary-alloy problem: The one-dimensional spinless Falicov-Kimball model [J].
Freericks, JK ;
Gruber, C ;
Macris, N .
PHYSICAL REVIEW B, 1996, 53 (24) :16189-16196