Effective methods for solving banded Toeplitz systems

被引:48
作者
Bini, DA [1 ]
Meini, B [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
banded matrices; Toeplitz matrices; displacement rank; cyclic reduction; Graeffe's method;
D O I
10.1137/S0895479897324585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose new algorithms for solving n x n banded Toeplitz systems with bandwidth m. If the function associated with the Toeplitz matrix has no zero in the unit circle, then O(n log m+ m log(2) m log log epsilon(-1)) arithmetic operations (ops) are sufficient to approximate the solution of the system up to within the error epsilon; otherwise the cost becomes O(n log m + m log(2) m log n/m) ops. Here m = o(n) and n > log epsilon(-1). Some applications are presented. The methods can be applied to infinite and bi-infinite systems and to block matrices.
引用
收藏
页码:700 / 719
页数:20
相关论文
共 33 条
[1]   NUMERICAL EXPERIENCE WITH A SUPERFAST REAL TOEPLITZ SOLVER [J].
AMMAR, GS ;
GRAGG, WB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 :185-206
[2]   ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD [J].
AXELSSON, O ;
LINDSKOG, G .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :499-523
[3]  
BINI D, 1983, LINEAR ALGEBRA APPL, V52-3, P99
[4]   PARALLEL SOLUTION OF CERTAIN TOEPLITZ LINEAR-SYSTEMS [J].
BINI, D .
SIAM JOURNAL ON COMPUTING, 1984, 13 (02) :268-276
[5]  
Bini D., 1988, Calcolo, V25, P37, DOI 10.1007/BF02575746
[6]  
Bini D, 1995, COMPUTATIONS WITH MARKOV CHAINS, P21
[7]   On the solution of a nonlinear matrix equation arising in queueing problems [J].
Bini, D ;
Meini, B .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :906-926
[8]  
BINI D, 1990, SPAA 90 : 2ND ANNUAL ACM SYMPOSIUM ON PARALLEL ALGORITHMS AND ARCHITECTURES, P220, DOI 10.1145/97444.97688
[9]  
BINI D, 1983, 835 SUNY ALB
[10]  
BINI D, 1994, MATRIX POLYNOMIAL CO, V1