Effective methods for solving banded Toeplitz systems

被引:48
作者
Bini, DA [1 ]
Meini, B [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
banded matrices; Toeplitz matrices; displacement rank; cyclic reduction; Graeffe's method;
D O I
10.1137/S0895479897324585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose new algorithms for solving n x n banded Toeplitz systems with bandwidth m. If the function associated with the Toeplitz matrix has no zero in the unit circle, then O(n log m+ m log(2) m log log epsilon(-1)) arithmetic operations (ops) are sufficient to approximate the solution of the system up to within the error epsilon; otherwise the cost becomes O(n log m + m log(2) m log n/m) ops. Here m = o(n) and n > log epsilon(-1). Some applications are presented. The methods can be applied to infinite and bi-infinite systems and to block matrices.
引用
收藏
页码:700 / 719
页数:20
相关论文
共 33 条
[31]  
Stoer J., 2013, INTRO NUMERICAL ANAL
[32]  
STRANG G, 1986, STUD APPL MATH, V74, P171
[33]   Stability of the block cyclic reduction [J].
Yalamov, P ;
Pavlov, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 249 :341-358