Energetics of a hydrogen bond (charged and neutral) and of a cation-π interaction in apoflavodoxin

被引:69
作者
Fernández-Recio, J
Romero, A
Sancho, J [1 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Bioquim & Biol Mol & Celular, E-50009 Zaragoza, Spain
[2] CSIC, Ctr Invest Biol, E-28006 Madrid, Spain
关键词
hydrogen bond; cation-pi interaction; histidine pK(a); flavodoxin; protein stability;
D O I
10.1006/jmbi.1999.2863
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anabaena apoflavodioxin contains a single histidine residue (H34) that interacts with two aromatic residues (F7 and Y47). The histidine and phenylalanine rings are almost coplanar and they can establish a cation-pi interaction when the histidine is protonated. The histidine and tyrosine side-chains are engaged in a hydrogen bond, which is their only contact. We analyse the energetics of these interactions using pK(a)-shift analysis, double-mutant cycle analysis at two pH values, and X-ray crystallography. The H/F interaction is very weak when the histidine is neutral, but it is strengthened by 0.5 kcal mol(-1) on histidine protonation. Supporting this fact, the histidine pK(a) in a FR mutant is 0.4 pH units lower than in wild-type. The strength of the H/Y hydrogen bond is 0.7 kcal mol(-1) when the histidine is charged, and it becomes stronger (1.3 kcal mol(-1)) when the histidine is neutral. This is consistent with our observation that the (H34)N-epsilon 2-OH(Y47) distance ij slightly shorter in the apoflavodoxin structure at FH 9.0 than in the previously reported structure at pH 6.0. It is also consistent with a histidine pK(a) value 0.6 pH units higher in a Y47F mutant than in the wild-type protein. We suggest that the higher stability of the neutral hydrogen bond could be due to a higher desolvation penalty of the charged hydrogen bond that would offset its more favourable enthalpy of formation. The relationship between hydrogen bond strength and the contribution of hydrogen bonds to protein stability is discussed. (C) 1999 Academic Press.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 61 条
[1]   ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION [J].
ABAGYAN, R ;
TOTROV, M ;
KUZNETSOV, D .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (05) :488-506
[2]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[3]   THE (I, I+4) PHE-HIS INTERACTION STUDIED IN AN ALANINE-BASED ALPHA-HELIX [J].
ARMSTRONG, KM ;
FAIRMAN, R ;
BALDWIN, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 230 (01) :284-291
[4]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[5]  
BRUNGER AT, 1992, XPLOR VERSION 3 1 SY
[6]   AROMATIC-AROMATIC INTERACTION - A MECHANISM OF PROTEIN-STRUCTURE STABILIZATION [J].
BURLEY, SK ;
PETSKO, GA .
SCIENCE, 1985, 229 (4708) :23-28
[7]   THE USE OF DOUBLE MUTANTS TO DETECT STRUCTURAL-CHANGES IN THE ACTIVE-SITE OF THE TYROSYL-TRANSFER RNA-SYNTHETASE (BACILLUS-STEAROTHERMOPHILUS) [J].
CARTER, PJ ;
WINTER, G ;
WILKINSON, AJ ;
FERSHT, AR .
CELL, 1984, 38 (03) :835-840
[8]   SITE-DIRECTED MUTAGENESIS OF VIRTUALLY ANY PLASMID BY ELIMINATING A UNIQUE SITE [J].
DENG, WP ;
NICKOLOFF, JA .
ANALYTICAL BIOCHEMISTRY, 1992, 200 (01) :81-88
[9]   Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp [J].
Dougherty, DA .
SCIENCE, 1996, 271 (5246) :163-168
[10]   ACCURATE BOND AND ANGLE PARAMETERS FOR X-RAY PROTEIN-STRUCTURE REFINEMENT [J].
ENGH, RA ;
HUBER, R .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :392-400