On the problem of algebraic completeness for the invariants of the Riemann tensor. II

被引:10
作者
Carminati, J [1 ]
Zakhary, E
McLenaghan, RG
机构
[1] Deakin Univ, Sch Comp & Math, Waurn Ponds, Vic 3217, Australia
[2] Deakin Univ, Sch Management Informat Syst, Waurn Ponds, Vic 3217, Australia
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1063/1.1418427
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the set of invariants CZ [E. Zakhary and J. Carminati, J. Math. Phys. 42, 1474 (2001)] for the class of space-times whose Ricci tensors do not possess a null eigenvector. We show that all cases are completely backsolvable in terms of sets of invariants from CZ. We provide algebraically complete sets for each canonically different space-time. (C) 2002 American Institute of Physics.
引用
收藏
页码:492 / 507
页数:16
相关论文
共 9 条
[1]   ALGEBRAIC INVARIANTS OF THE RIEMANN TENSOR IN A 4-DIMENSIONAL LORENTZIAN SPACE [J].
CARMINATI, J ;
MCLENAGHAN, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) :3135-3140
[2]  
CARMINATI J, UNPUB
[3]   Canonical forms for symmetric linear vector functions in pseudo-euclidean space [J].
Churchill, R. V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1932, 34 (1-4) :784-794
[4]   CLASSIFICATION OF RICCI TENSOR IN GENERAL RELATIVITY THEORY [J].
HALL, GS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (04) :541-545
[5]   COMPUTER-AIDED CLASSIFICATION OF THE RICCI TENSOR IN GENERAL-RELATIVITY [J].
JOLY, GC ;
MACCALLUM, MAH .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (04) :541-556
[6]   THE CLASSIFICATION OF THE RICCI AND PLEBANSKI TENSORS IN GENERAL-RELATIVITY USING NEWMAN-PENROSE FORMALISM [J].
MCINTOSH, CBG ;
FOYSTER, JM ;
LUN, AWC .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (11) :2620-2623
[7]   A complete set of Riemann invariants [J].
Zakhary, E ;
McIntosh, CBG .
GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (05) :539-581
[8]   On the problem of algebraic completeness for the invariants of the Riemann tensor: I [J].
Zakhary, E ;
Carminati, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) :1474-1485
[9]  
ZAKHARY E, 1995, THESIS MONASH U